matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeLoesbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Gleichungssysteme" - Loesbarkeit
Loesbarkeit < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Loesbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:39 Fr 01.08.2008
Autor: zu1u

Aufgabe
Gegeben sei die Matrize A:=( 1 2 0 3 )

Wir betrachten das lineare Gleichungssystem Ax = a. Ein LGS ist unloesbar, es hat genau eine Loesung oder es gibt unendlich viele Loesungen. Welche der Faelle sind in genanntem LGS moeglich.

In meiner Musterloesung hier zu der Aufgabe steht:
Das System Ax=b ist unloesbar, falls Rang(A,b) != Rang(A), es ist loesbar mit unendlich vielen Loesungen, falls Rang(A,b)=Rang(A)<dim(b) und eindeutig loesbar, wenn Rang(A,b) = Rang(A) = n = dim(b), wobei letzteres natuerlich nur bei quadratischen Matrizen moeglich ist.

weiter:
Da Rang(A,a)=Rang(A) = 1 fuer beliebige rechte Seiten a gilt, besitzt es also unendlich viele Loesungen.


Ich habe mir jetzt gedacht das Beispiel schon unendlich viele Loesungen haben kann. Aber das dafuer  Rang(A,b)=Rang(A)<dim(b) gelten muss verwirrt mich etwas. Denn wuerde ein a fuer Ax=a nicht eindimensinal sein also dim(a) = Rang(A) = Rang(A,a) ?

Hab ich da vieleicht irgendwie eine Denkfehler?


        
Bezug
Loesbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:07 Fr 01.08.2008
Autor: MathePower

Hallo zu1u,

> Gegeben sei die Matrize A:=( 1 2 0 3 )
>  
> Wir betrachten das lineare Gleichungssystem Ax = a. Ein LGS
> ist unloesbar, es hat genau eine Loesung oder es gibt
> unendlich viele Loesungen. Welche der Faelle sind in
> genanntem LGS moeglich.
>  In meiner Musterloesung hier zu der Aufgabe steht:
>  Das System Ax=b ist unloesbar, falls Rang(A,b) != Rang(A),
> es ist loesbar mit unendlich vielen Loesungen, falls
> Rang(A,b)=Rang(A)<dim(b) und eindeutig loesbar, wenn
> Rang(A,b) = Rang(A) = n = dim(b), wobei letzteres
> natuerlich nur bei quadratischen Matrizen moeglich ist.
>  
> weiter:
>  Da Rang(A,a)=Rang(A) = 1 fuer beliebige rechte Seiten a
> gilt, besitzt es also unendlich viele Loesungen.
>  
>
> Ich habe mir jetzt gedacht das Beispiel schon unendlich
> viele Loesungen haben kann. Aber das dafuer  
> Rang(A,b)=Rang(A)<dim(b) gelten muss verwirrt mich etwas.
> Denn wuerde ein a fuer Ax=a nicht eindimensinal sein also
> dim(a) = Rang(A) = Rang(A,a) ?


Ja.


>  
> Hab ich da vieleicht irgendwie eine Denkfehler?
>  


Vielleicht war das einfach die falsche Argumentation, die da in der Musterlösung steht.

Da der Rang(A)=Rang(A,a)=1 kleiner ist als die Anzahl der Unbekannten (hier: 4), gibt es unendliche viele Lösungen.

Siehe auch: []Lineares Gleichungssystem

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]