matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesLipschitzstetigkeit?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Lipschitzstetigkeit?
Lipschitzstetigkeit? < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lipschitzstetigkeit?: Oder doch etwas anderes?
Status: (Frage) beantwortet Status 
Datum: 20:43 Sa 21.07.2007
Autor: Wehm

Aufgabe
Sei
[mm] g_1:=\{(1+t , 1-t, 2-3t) : t\in \IR \} [/mm]
[mm] g_2:=\{(2+t , 2t, 1-t) : t\in \IR \} [/mm]

Bestimmen Sie [mm] x\in g_1 [/mm] und [mm] y\in g_2 [/mm] so, daß [mm] ||x-y||_2<||a-b||_2 \forall a\in g_1, b\in g_2 [/mm] mit [mm] (a,b)\not=(x,y) [/mm]

Huhu

Ich bin vollkommen ratlos bei dieser Aufgabe. Zuerst dachte ich man muss hier mit Extrema arbeiten. So finde ich einen Punkt x,y dessen Funktionswert kleiner ist als alle anderen Punkte (a,b). Dann aber dachte ich das es sich hier vielleicht doch um Liptschitzstetigkeit mit L = 1 handelt?

Also Thema habe ich mit diesen beiden Vermutungen schon mal sicher erkannt, nur wie ist nun das vorgehen?

Grüße,
Wehm

        
Bezug
Lipschitzstetigkeit?: Eher was anderes...
Status: (Antwort) fertig Status 
Datum: 11:05 So 22.07.2007
Autor: angela.h.b.


> Sei
> [mm]g_1:=\{(1+t , 1-t, 2-3t) : t\in \IR \}[/mm]
>  [mm]g_2:=\{(2+t , 2t, 1-t) : t\in \IR \}[/mm]
>  
> Bestimmen Sie [mm]x\in g_1[/mm] und [mm]y\in g_2[/mm] so, daß
> [mm]||x-y||_2<||a-b||_2 \forall a\in g_1, b\in g_2[/mm] mit
> [mm](a,b)\not=(x,y)[/mm]
>  
> Huhu
>  
> Ich bin vollkommen ratlos bei dieser Aufgabe. Zuerst dachte
> ich man muss hier mit Extrema arbeiten. So finde ich einen
> Punkt x,y dessen Funktionswert kleiner ist als alle anderen
> Punkte (a,b). Dann aber dachte ich das es sich hier
> vielleicht doch um Liptschitzstetigkeit mit L = 1 handelt?
>  
> Also Thema habe ich mit diesen beiden Vermutungen schon mal
> sicher erkannt, nur wie ist nun das vorgehen?

Hallo,

und: hmmmmmmmm ---

Ich würde das Problem ganz anders einordnen, und ich glaube, es ist wichtig zunächst zu erkennen, welche "Geometrie" dahintersteckt.

Es geht doch hier um zwei Geraden, und darum, auf [mm] g_1 [/mm] bzw. [mm] g_2 [/mm] Punkte x bzw. y zu finden, so daß deren Abstand voneinander kleiner ist als sämtliche anderen Abstände zwischen 2 Punkten, die jeweils auf einer der Geraden liegen.

Mit Methoden der linearen Algebra:
Hierzu würde ich den Abstand v. [mm] g_1 [/mm] und [mm] g_2 [/mm] berechnen, bzw. die gemeinsame Lotgerade und deren Schnittpunkte mit [mm] g_1 [/mm] und [mm] g_2. [/mm] Diese sollten Deine Punkte x und y sein.

Mit Methoden der Analysis:
Mit Extremwerten ginge es, indem Du berechnest, für welche t,s der Abstand [mm] A(t,s)=\parallel [/mm] (1+t , 1-t, 2-3t) - (2+s , 2s, 1-s) [mm] \parallel_2 [/mm] minimal wird.

Gruß v. Angela



Bezug
                
Bezug
Lipschitzstetigkeit?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:08 So 22.07.2007
Autor: Wehm

Mit dem Ratschlag könnte ich die Aufgabe wirklich lösen.

Danke angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]