matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenLipschitzstetig
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - Lipschitzstetig
Lipschitzstetig < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lipschitzstetig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:25 Do 21.01.2016
Autor: Reynir

Aufgabe
Die Funktion $f : [mm] [x_1 [/mm] , [mm] x_2 [/mm] ] [mm] \times [y_1 [/mm] , [mm] y_2 [/mm] ] [mm] \rightarrow \mathbb [/mm] {R}$ sei nach y differenzierbar und  [mm] $\frac{\partial f(x,y)}{\partial y}$sei [/mm] stetig im Definitionsquader. Zeigen Sie, dass f Lipschitz–stetig in y–Richtung ist.

Hi,
ich hatte die Idee, dass ja der Differenzenquotient für [mm] $y\rightarrow y_0$ [/mm] genau das ist, was ich suche, wenn ich zeigen will, dass [mm] $|f(x,y)-f(x,y_0)\leq [/mm] L [mm] |y-y_0|$ [/mm] gilt, wobei ich als L das Maximum des Betrages von der Ableitung nach y nehmen würde, welches es als stetige Funktion auf kompaktem Definitionsbereich (bei festem x ) annimmt.
Das sähe dann in etwa so aus: [mm] $lim_{y\rightarrow y_o} \frac{f(x,y)-f(x,y_0)}{y-y_0}\leq [/mm] L $.
Meine Frage ist nun zweierlei, macht das grundlegend Sinn, weil ich bei meiner Argumentation die Schwachstelle sehe, dass ich noch nicht wirklich was zu x gesagt habe, was ja bei lipschitz nicht fest ist. Habt ihr einen Tipp, wie ich noch was zu x sagen kann?
Viele Grüße,
Reynir

        
Bezug
Lipschitzstetig: Antwort
Status: (Antwort) fertig Status 
Datum: 09:50 Do 21.01.2016
Autor: fred97

Den Quader nenne ich Q. $ [mm] \frac{\partial f}{\partial y} [/mm] $ ist auf Q stetig, also beschränkt. Somit ex. ein L [mm] \ge [/mm] 0 mit

$ [mm] |\frac{\partial f(x,y)}{\partial y}| \le [/mm] L $  für alle $(x,y) [mm] \in [/mm] Q$.

Sei nun x [mm] \in [x_1,x_2] [/mm] zunächst fest. Damit definieren wir

    $g(y):=f(x,y)$ für y [mm] \in [y_1,y_2] [/mm]

g ist differenzierbar und $g'(y)= [mm] \frac{\partial f(x,y)}{\partial y} [/mm] $

Somit ist

   (*)   |g'(y)| [mm] \le [/mm] L  für alle  y [mm] \in [y_1,y_2] [/mm]

Sind nun  $y , [mm] y_0 \in [y_1,y_2]$, [/mm] so ist

  [mm] f(x,y)-f(x,y_0)=g(y)-g(y_0)= g'(t)(y-y_0) [/mm] mit einem t zwischen y und [mm] y_0 [/mm]

Mittelwertsatz !

Also, mit (*)

  $| [mm] f(x,y)-f(x,y_0)|=|g'(t)|*|(y-y_0)| \le L|y-y_0|$ [/mm]

FRED

  

Bezug
                
Bezug
Lipschitzstetig: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:15 Fr 22.01.2016
Autor: Reynir

Danke Fred,
das hat meine Frage geklärt, insbesondere meine Frage zum dem festen x, danke für die Erklärung. :)
Viele Grüße,
Reynir

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]