matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenLipschitzkonstante
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Lipschitzkonstante
Lipschitzkonstante < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lipschitzkonstante: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:01 Fr 02.01.2009
Autor: Rutzel

Aufgabe
Geben Sie die Lipschitzkonstante L an für die Funktion [mm] f(y)=y^2-2 [/mm] auf dem Intervall I=[-1,2], d.h. die kleinste Konstante, für die gilt: [mm] |f(y)-f(y')|\le [/mm] L|y-y'| für alle y,y' [mm] \in [/mm] I.

Hallo,

wegen
[mm] \frac{d}{dy}f(y)=2y [/mm]
und
2y<=4 [mm] \forall [/mm] y,y' [mm] \in [/mm] I

habe ich L=4 gewählt.

ist das ok?

Gruß,
Rutzel

        
Bezug
Lipschitzkonstante: Antwort
Status: (Antwort) fertig Status 
Datum: 17:21 Fr 02.01.2009
Autor: felixf

Hallo Rutzel

> Geben Sie die Lipschitzkonstante L an für die Funktion
> [mm]f(y)=y^2-2[/mm] auf dem Intervall I=[-1,2], d.h. die kleinste
> Konstante, für die gilt: [mm]|f(y)-f(y')|\le[/mm] L|y-y'| für alle
> y,y' [mm]\in[/mm] I.
>
>  Hallo,
>  
> wegen
>  [mm]\frac{d}{dy}f(y)=2y[/mm]
>  und
>  2y<=4 [mm]\forall[/mm] y,y' [mm]\in[/mm] I
>  
> habe ich L=4 gewählt.
>  
> ist das ok?

Schon. Aber kannst du das auch etwas genauer begruenden?

LG Felix


Bezug
                
Bezug
Lipschitzkonstante: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:33 Fr 02.01.2009
Autor: Rutzel


> Schon. Aber kannst du das auch etwas genauer begruenden?

Naja,
[mm] |f(y)-f(y')|\le [/mm] L|y-y'|
[mm] \gdw [/mm]
[mm] \frac{|f(y)-f(y')|}{|y-y'|}\le [/mm] L

Links steht ja der Betrag des Differenzenquotient, bzw eben [mm] \left|\frac{d}{dy}f(y)\right|. [/mm]

hm... eigentlich hat man beim differenzenquotienten y->y', wie kann man das dann retten?

Gruß,
Rutzel

Bezug
                        
Bezug
Lipschitzkonstante: Antwort
Status: (Antwort) fertig Status 
Datum: 01:10 Sa 03.01.2009
Autor: felixf

Hallo

> > Schon. Aber kannst du das auch etwas genauer begruenden?
>  
> Naja,
>  [mm]|f(y)-f(y')|\le[/mm] L|y-y'|
>  [mm]\gdw[/mm]
>  [mm]\frac{|f(y)-f(y')|}{|y-y'|}\le[/mm] L

Ja, fuer $y [mm] \neq [/mm] y'$.

> Links steht ja der Betrag des Differenzenquotient, bzw eben
> [mm]\left|\frac{d}{dy}f(y)\right|.[/mm]

Nein, der Grenzwert fuer $y' [mm] \to [/mm] y$ ist [mm] $|\tfrac{d}{d y} [/mm] f(y)|$, nicht der Bruch selber.

> hm... eigentlich hat man beim differenzenquotienten y->y',
> wie kann man das dann retten?

Nun, du musst einen passenden Satz anwenden. Der Differenzenquotient ist immer der Wert einer Ableitung, aber evtl an einer anderen Stelle.

Damit kannst du argumentieren, dass dein $L$ gross genug ist. Aber ist es auch das minimal moegliche?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]