matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitLipschitz-stetig
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stetigkeit" - Lipschitz-stetig
Lipschitz-stetig < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lipschitz-stetig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:24 So 14.01.2007
Autor: schneeweisschen

Aufgabe
Sei n [mm] \in \IN, [/mm] n [mm] \ge [/mm] 2 und w: [mm] \IR_{\ge 0} \to \IR [/mm] def. durch w(x) := [mm] \wurzel[n]{x}. [/mm]
Man zeige:
a) w ist nicht Lipschitz-stetig in [mm] \IR_{\ge 0}. [/mm]
b) w ist Lipschitz-stetig in jedem Intervall der Form [mm] [a,\infty) [/mm] mit a > 0.

guten abend

ich weiss nicht wie ich beweisen kann dass w nicht Lipschitz-stetig ist. ich hoffe da kann mir jemand helfen.

für b) hab ich so angefangen:
Sei a>0 beliebig. Dann gilt für alle x,y [mm] \in [a,\infty): [/mm]
d(f(x),f(y)) = [mm] |\wurzel[n]{x} [/mm] - [mm] \wurzel[n]{y}| [/mm] = |x - y| * |???|

bin ich überhaupt auf dem richtigen dampfer mit meinem anfang?

und wenn ja, wie kann ich weitermachen an der stelle wo die fragezeichen stehen?

danke und gruß
schneeweisschen

        
Bezug
Lipschitz-stetig: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:51 Mo 15.01.2007
Autor: thoma2

mit der def. der lip.stetig

zu b)

> d(f(x),f(y)) = [mm]|\wurzel[n]{x}[/mm] - [mm]\wurzel[n]{y}|[/mm] = |x - y| *
> |???|
>  

sicher? also [mm] |\wurzel{16} [/mm] - [mm] \wurzel{9}|\not=|16-9| [/mm] sondern 1

aber |a-b| = [mm] \bruch{|a-b| * |a+b|}{|a+b|} [/mm]

zu a)
in b)  schau dir die def.bereiche noch mal an
dann a) anwenden und einen wiederspruch zeigen




Bezug
                
Bezug
Lipschitz-stetig: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:07 Mo 15.01.2007
Autor: schneeweisschen

hallo

> > d(f(x),f(y)) = [mm]|\wurzel[n]{x}[/mm] - [mm]\wurzel[n]{y}|[/mm] = |x - y| *
> > |???|

meine frage wär im moment, wenn ich aus [mm] |\wurzel[n]{x} [/mm] - [mm] \wurzel[n]{y}| [/mm]
|x-y| ausklammer, was bleibt übrig?

gruß
schneeweisschen



Bezug
                        
Bezug
Lipschitz-stetig: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Mi 17.01.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Lipschitz-stetig: Antwort
Status: (Antwort) fertig Status 
Datum: 02:01 Mo 15.01.2007
Autor: Gonozal_IX

Es gibt so einen schönen Satz:

f ist Lipschitzstetig [mm] \gdw [/mm] Ableitung beschränkt :-)

Mit ein bisschen überlegen kann man den auch recht einfach beweisen.

Gruß,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]