matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitLipschitz-Stetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stetigkeit" - Lipschitz-Stetigkeit
Lipschitz-Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lipschitz-Stetigkeit: Wurzelfunktion
Status: (Frage) beantwortet Status 
Datum: 12:59 Fr 10.12.2010
Autor: BarneyS

Aufgabe
Zeigen Sie [mm]f(x) = \wurzel{x}[/mm] ist Lipschitz-Setig auf [mm][2,\infty)[/mm] aber nicht Lipschitz-Stetig in [mm]x_0 = 0[/mm]

Hallo,

ok, hier mein Versuch:

[mm]|f(x)-f(y)|\le L|x-y|[/mm]

[mm]\gdw | \wurzel{x} - \wurzel{y}| \le L |x-y|[/mm]

für [mm]y=2[/mm] und [mm]x \in (2;infty)[/mm] :

[mm]\wurzel{x}-\wurzel{2} \le L(x-2)[/mm]

[mm]\gdw \bruch{\wurzel{x}-\wurzel{2}}{x-2} \le L[/mm]

Da wir hier eine reelle Lösung für L haben, und für [mm]x\rightarrow\infty[/mm] die linke Seite der Gleichung gegen 0 geht, und da die Rechnung für ein beliebiges [mm]y \in [2,\infty) [/mm] gilt, haben wir Lipschitz-Stetigkeit gezeigt.

Aber was passiert wenn x gegen 2 geht?

Lipschitz-Stetigkeit in [mm]x_0=0[/mm]:

[mm] y=0 [/mm] und [mm]x \in (0,a] [/mm] mit [mm]a \in \IR >0[/mm]

[mm]|\wurzel{x} - 0| \le L|x-0|[/mm]

[mm]\gdw \wurzel{x} \le Lx[/mm]

[mm]\gdw L\ge \bruch{1}{\wurzel{x}}[/mm]

Keine reelle Lösung für L, da für [mm]x \rightarrow 0[/mm] die rechte Seite unendlich groß wird. Also ist f(x) in x = 0 nicht Lipschitz-Stetig.

        
Bezug
Lipschitz-Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:17 Fr 10.12.2010
Autor: leduart

Hallo

> Zeigen Sie [mm]f(x) = \wurzel{x}[/mm] ist Lipschitz-Setig auf
> [mm][2,\infty)[/mm] aber nicht Lipschitz-Stetig in [mm]x_0 = 0[/mm]
>  Hallo,
>  
> ok, hier mein Versuch:
>  
> [mm]|f(x)-f(y)|\le L|x-y|[/mm]
>  
>  
> für [mm]y=2[/mm] und [mm]x \in (2;infty)[/mm] :

warum hier y=2?

> [mm]\wurzel{x}-\wurzel{2} \le L(x-2)[/mm]
>  
> [mm]\gdw \bruch{\wurzel{x}-\wurzel{2}}{x-2} \le L[/mm]
>  
> Da wir hier eine reelle Lösung für L haben, und für
> [mm]x\rightarrow\infty[/mm] die linke Seite der Gleichung gegen 0
> geht, und da die Rechnung für ein beliebiges [mm]y \in [2,\infty)[/mm]
> gilt, haben wir Lipschitz-Stetigkeit gezeigt.

nein, denn das gilt doch nicht für beliebiges x,y
du musst ein L angeben!

> Aber was passiert wenn x gegen 2 geht?

genau das, sollst du ja allgemein für y gegen x zeigen!
Tip erweitern mit $ [mm] \wurzel{x} +\wurzel{y}$ [/mm] oder (x-y)=$ [mm] \wurzel{x} +\wurzel{y}$ [/mm]
oder (x-y)=$ [mm] (\wurzel{x} +\wurzel{y})*( \wurzel{x} -\wurzel{y})$ [/mm]

> Lipschitz-Stetigkeit in [mm]x_0=0[/mm]:
>  
> [mm]y=0[/mm] und [mm]x \in (0,a][/mm] mit [mm]a \in \IR >0[/mm]
>  
> [mm]|\wurzel{x} - 0| \le L|x-0|[/mm]
>  
> [mm]\gdw \wurzel{x} \le Lx[/mm]
>  
> [mm]\gdw L\ge \bruch{1}{\wurzel{x}}[/mm]
>  
> Keine reelle Lösung für L, da für [mm]x \rightarrow 0[/mm] die
> rechte Seite unendlich groß wird. Also ist f(x) in x = 0
> nicht Lipschitz-Stetig.

Der Teil ist richtig
gruss leduart


Bezug
                
Bezug
Lipschitz-Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:33 Fr 10.12.2010
Autor: BarneyS

ich glaube ich hab's kappiert.

[mm]|\wurzel{x}- \wurzel{y}| \le L |x-y|[/mm]

[mm]x>y[/mm] o.B.d.A.

[mm]\Rightarrow \wurzel{x}-\wurzel{y} \le L(x-y)[/mm]

[mm]\gdw \wurzel{x}-\wurzel{y} \le L(\wurzel{x}-\wurzel{y})(\wurzel{x}+\wurzel{y})[/mm]

[mm]\gdw L \ge \bruch{1}{\wurzel{x}+\wurzel{y}}[/mm]

da [mm]min(x,y) = 2[/mm]

[mm]L=\bruch{1}{2\wurzel{2}}[/mm]


Bezug
                        
Bezug
Lipschitz-Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 Fr 10.12.2010
Autor: fred97

Du hast es kapiert, bis auf:

                 $ [mm] \wurzel[]{4}\ne 2*\wurzel{2}$ [/mm]

FRED

Bezug
                                
Bezug
Lipschitz-Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:38 Fr 10.12.2010
Autor: BarneyS

ja, hatte ich schon geändert, bevor du geantwortet hast...^^

thx

Bezug
        
Bezug
Lipschitz-Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:19 Fr 10.12.2010
Autor: fred97


> Zeigen Sie [mm]f(x) = \wurzel{x}[/mm] ist Lipschitz-Setig auf
> [mm][2,\infty)[/mm] aber nicht Lipschitz-Stetig in [mm]x_0 = 0[/mm]

             " Lipschitz-Stetig in [mm]x_0 = 0[/mm]"

ist doch völlig unsinnig !

Es soll wahrscheinlich lauten: " .....nicht Lipschitz-Stetig auf [0, [mm] \infty) [/mm]

FRED




>  Hallo,
>  
> ok, hier mein Versuch:
>  
> [mm]|f(x)-f(y)|\le L|x-y|[/mm]
>  
> [mm]\gdw | \wurzel{x} - \wurzel{y}| \le L |x-y|[/mm]
>  
> für [mm]y=2[/mm] und [mm]x \in (2;infty)[/mm] :
>  
> [mm]\wurzel{x}-\wurzel{2} \le L(x-2)[/mm]
>  
> [mm]\gdw \bruch{\wurzel{x}-\wurzel{2}}{x-2} \le L[/mm]
>  
> Da wir hier eine reelle Lösung für L haben, und für
> [mm]x\rightarrow\infty[/mm] die linke Seite der Gleichung gegen 0
> geht, und da die Rechnung für ein beliebiges [mm]y \in [2,\infty)[/mm]
> gilt, haben wir Lipschitz-Stetigkeit gezeigt.
>  
> Aber was passiert wenn x gegen 2 geht?
>  
> Lipschitz-Stetigkeit in [mm]x_0=0[/mm]:
>  
> [mm]y=0[/mm] und [mm]x \in (0,a][/mm] mit [mm]a \in \IR >0[/mm]
>  
> [mm]|\wurzel{x} - 0| \le L|x-0|[/mm]
>  
> [mm]\gdw \wurzel{x} \le Lx[/mm]
>  
> [mm]\gdw L\ge \bruch{1}{\wurzel{x}}[/mm]
>  
> Keine reelle Lösung für L, da für [mm]x \rightarrow 0[/mm] die
> rechte Seite unendlich groß wird. Also ist f(x) in x = 0
> nicht Lipschitz-Stetig.


Bezug
                
Bezug
Lipschitz-Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:25 Fr 10.12.2010
Autor: BarneyS


>  
> " Lipschitz-Stetig in [mm]x_0 = 0[/mm]"
>
> ist doch völlig unsinnig !
>  
> Es soll wahrscheinlich lauten: " .....nicht
> Lipschitz-Stetig auf [0, [mm]\infty)[/mm]
>  
> FRED

Hab ich mir auch gedacht^^

Lipschitz-Stetigkeit kann man ja nur in einem Intervall zeigen und nicht in einem Punkt.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]