matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisLipschitz-Bedingung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Lipschitz-Bedingung
Lipschitz-Bedingung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lipschitz-Bedingung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:13 Mo 28.08.2006
Autor: Ande

Aufgabe
Zeige: Genügt f(x,y) in der offenen Menge [mm] D\subset \IR^2 [/mm] einer lokalen Lipschitzbedingung bezüglich y und ist [mm] A\subset [/mm] D kompakt und f beschränkt auf A, so genügt f in A einer globalen Lipschitzbedingung bezüglich y. Hinweis: Ohne Beweis zu verwenden:Dass eine lokal lipschitz-stetige Funktion g: A -> [mm] \IR [/mm]  mit [mm] A\subset \IR [/mm] kompakt auf A (global) Lipschitz-stetig ist.

Kann mir bitte jemand helfen? Ich habe keine Ahnung wie ich das Problem angehen soll.

        
Bezug
Lipschitz-Bedingung: Ansätze?
Status: (Antwort) fertig Status 
Datum: 14:41 Mo 28.08.2006
Autor: Christian

Hallo.

Hier ein paar Denkanstöße:
A ist kompakte Teilmenge von [mm] $\IR^2$, [/mm] das bedeutet, A ist ....?
f ist auf der kompakten Menge A stetig, also .... stetig.
f ist bezüglich y .....-stetig auf D, was folgt aus dem Hinweis für die Funktion [mm] $f(x,\cdot):D\cap \{x\}\times\IR\to\IR$? [/mm]

Solltest Du damit nicht weiterkommen, kannst Du ja immernoch mal nachfragen, es kommt hier aber prinzipiell besser an, wenn man sehen kann, daß sich jemand mit einer Aufgabe auch wirklich auseinandergesetzt hat.

Gruß,
Christian

Bezug
                
Bezug
Lipschitz-Bedingung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:03 Di 29.08.2006
Autor: Ande

Hallo Christian
Danke für die Hilfe, entschuldigung für die nackte Frage, ich habe mich durchaus mit der Aufgabe beschäftigt, habe aber trotzdem keinen Ansatz gefunden, den ich erwähnenswert fand...
Ich weiss nicht, was der Unterschied zwischen lokale und global ist, wir haben dieses Thema nie behandelt.

Bezug
                        
Bezug
Lipschitz-Bedingung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:21 Di 29.08.2006
Autor: Christian

Hallo.

Naja, lokal bedeutet, daß eine Eigenschaft nur in einer (möglicherweise sehr kleinen) Umgebung um einen Punkt x gilt, bzw, im Beispiel auch, daß es für jeden Punkt x eine solche Umgebung gibt.
Global hingegen bedeutet: Eine Aussage gilt für alle x.

Gruß,
Christian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]