matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraLinksinverse
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Linksinverse
Linksinverse < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linksinverse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:12 Sa 16.06.2007
Autor: rainman_do

Aufgabe
Sei [mm] n\in N_{+} [/mm] und A [mm] \in Mat_n(K). [/mm] Zeigen Sie : Gibt es eine Linksinverse zu A, d.h. gibt es eine Matrix B [mm] \in Mat_n(K) [/mm] mit B · A = [mm] I_n, [/mm] so ist A invertierbar und B = [mm] A^{-1} [/mm] !

Hallo,

bin mal eine paar alte Aufgaben durchgegangen und bin dabei auf diese Aufgabe gestossen, ich meine es wäre sogar eine alte Klausuraufgabe (die ich immernoch nicht lösen kann!). Also damals war mein Ansatz so, dass ich mit [mm] A^{-1} [/mm] von rechts multipliziert habe, allerdings darf ich ja nicht voraussetzen, dass [mm] A^{-1} [/mm] existiert, genausowenig wie [mm] B^{-1}. [/mm]

Wäre nett wenn mir da jemand einen Denkanstoss geben könnte. Danke

        
Bezug
Linksinverse: Antwort
Status: (Antwort) fertig Status 
Datum: 18:11 Sa 16.06.2007
Autor: blascowitz

Guten Abend.

Der Beweis der Existenz von A^-1 ergibt sich aus dem Determinantenhauptsatz

Es gilt ja det(AB)=det(A)*det(B)=det E=1. Wäre A nicht invertierbar wäre det A=0. [mm] \Rightarrow [/mm] 0*det(B)=1. Widerspruch. Also ist A invertierbar. Und da BA=E ist A^-1=B. Fertig ist der Beweis



Bezug
                
Bezug
Linksinverse: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:27 Sa 16.06.2007
Autor: rainman_do

Ahhh, sehr schön! Daran hab ich nicht gedacht. Vielen Dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]