matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraLinkseins/-inverses
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Algebra" - Linkseins/-inverses
Linkseins/-inverses < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linkseins/-inverses: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:30 Fr 19.09.2008
Autor: Riley

Aufgabe
Sei G eine Menge, G [mm] \times [/mm] G [mm] \rightarrow [/mm] G, (a,b) -> ab eine assoziateive Verknüpfug, G [mm] \rightarrow [/mm] G, a -> [mm] a^{-1}, [/mm] eine Abbildung und e [mm] \in [/mm] G ein Element mit den Eigenschaften:
(i) e ist eine Linkseins, d.h [mm] \forall [/mm] a [mm] \in [/mm] G ea = a,
(ii) [mm] a^{-1} [/mm] ist ein Linksinverses von a, d.h. [mm] a^{-1}a=e. [/mm]
Zu zeigen:
(a) [mm] a^{-1} [/mm] erfüllt auch a [mm] a^{-1} [/mm] = e (ist also auch Rechtsinvers)
(b) e erfüllt auch ae=a (ist also auch eine Rechtseins)

Hallo,
ich glaub die Aufgaben sind nicht sonderlich schwer, aber irgendwie weiß ich nicht wie ich das zusammenbasteln muss. Bei Teil (a) soll man betrachten

[mm] (a^{-1})^{-1} a^{-1} [/mm] a [mm] a^{-1} [/mm] dann kann ich (ii) verwenden:

= [mm] (a^{-1})^{-1} [/mm] e [mm] a^{-1} [/mm] und dann (i)

= [mm] (a^{-1})^{-1} a^{-1} [/mm] wenn ich nun setze [mm] b:=a^{-1} [/mm] gilt weiter

= [mm] b^{-1} [/mm] b  = e wieder nach (ii)

Hm, darf ich verwenden, dass [mm] (a^{-1})^{-1} [/mm] = a ??

... und wie muss ich bei Teil (b) vorgehen?

Viele Grüße,
Riley

        
Bezug
Linkseins/-inverses: Antwort
Status: (Antwort) fertig Status 
Datum: 19:54 Fr 19.09.2008
Autor: schachuzipus

Hallo Riley,

> Sei G eine Menge, G [mm]\times[/mm] G [mm]\rightarrow[/mm] G, (a,b) -> ab
> eine assoziateive Verknüpfug, G [mm]\rightarrow[/mm] G, a -> [mm]a^{-1},[/mm]
> eine Abbildung und e [mm]\in[/mm] G ein Element mit den
> Eigenschaften:
>  (i) e ist eine Linkseins, d.h [mm]\forall[/mm] a [mm]\in[/mm] G ea = a,
>  (ii) [mm]a^{-1}[/mm] ist ein Linksinverses von a, d.h. [mm]a^{-1}a=e.[/mm]
>  Zu zeigen:
>  (a) [mm]a^{-1}[/mm] erfüllt auch a [mm]a^{-1}[/mm] = e (ist also auch
> Rechtsinvers)
>  (b) e erfüllt auch ae=a (ist also auch eine Rechtseins)
>  Hallo,
>  ich glaub die Aufgaben sind nicht sonderlich schwer, aber
> irgendwie weiß ich nicht wie ich das zusammenbasteln muss.
> Bei Teil (a) soll man betrachten
>  
> [mm](a^{-1})^{-1} a^{-1}[/mm] a [mm]a^{-1}[/mm] dann kann ich (ii)
> verwenden:
>  
> = [mm](a^{-1})^{-1}[/mm] e [mm]a^{-1}[/mm] und dann (i)
>  
> = [mm](a^{-1})^{-1} a^{-1}[/mm] wenn ich nun setze [mm]b:=a^{-1}[/mm] gilt
> weiter
>  
> = [mm]b^{-1}[/mm] b  = e wieder nach (ii)

ja, das sieht gut aus!

>  
> Hm, darf ich verwenden, dass [mm](a^{-1})^{-1}[/mm] = a ??

Ich würde eher sagen: nein, aber du kannst ganz zu Beginn schreiben (du willst ja zeigen: [mm] $aa^{-1}=e$) [/mm]

[mm] $aa^{-1}\overset{(i)}{=}eaa^{-1}\overset{(ii)}{=}\left(a^{-1}\right)^{-1}a^{-1}aa^{-1}$ [/mm] dann weiter im Text ...

>  
> ... und wie muss ich bei Teil (b) vorgehen?

Nimm wieder die linke Seite her und forme mit (i), (ii) und (a) um:

[mm] $ae\overset{(ii)}{=}a\left(a^{-1}a\right)=\left(aa^{-1}\right)a\overset{(a)}{=}ea\overset{(i)}{=}a$ [/mm]

>  
> Viele Grüße,
>  Riley


LG

schachuzipus

Bezug
                
Bezug
Linkseins/-inverses: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:37 Fr 19.09.2008
Autor: Riley

Hi Schachuzipus,
ahja super, vielen Dank!
Viele Grüße,
Riley

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]