matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenLinearkombination von Vektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Vektoren" - Linearkombination von Vektoren
Linearkombination von Vektoren < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linearkombination von Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:33 Mo 27.10.2008
Autor: blumee

Hallo,

x = [mm] \pmat{ -1\\ 0\\ 0} [/mm]

a = [mm] \pmat{1 \\ 4\\ 1} [/mm]

b = [mm] \pmat{ 0\\ 1\\1 } [/mm]

c = [mm] \pmat{1 \\3\\ 0} [/mm]

d = [mm] \pmat{ 2\\9\\ 3} [/mm]

Ist der Vektor y als Linearkombinaztion der übrigen Vektoren darstellbar?

Normalerweise mach ich das ja mit gleichungssystemen, aber hier gelingt es mir nicht, wie soll ich vorgehen? Danke!

        
Bezug
Linearkombination von Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 13:47 Mo 27.10.2008
Autor: fred97


> Hallo,
>  
> x = [mm]\pmat{ -1\\ 0\\ 0}[/mm]
>  
> a = [mm]\pmat{1 \\ 4\\ 1}[/mm]
>  
> b = [mm]\pmat{ 0\\ 1\\1 }[/mm]
>  
> c = [mm]\pmat{1 \\3\\ 0}[/mm]
>  
> d = [mm]\pmat{ 2\\9\\ 3}[/mm]
>  
> Ist der Vektor y als Linearkombinaztion der übrigen
> Vektoren darstellbar?

Was ist y ?? Ich sehe nur x, a, ...., d !! Vielleicht x=y ?

Ich gehe mal davon aus, dass mit y der Vektor x gemeint ist.

Überlege Dir, dass die Lineare Hülle von a, b, c und d gerade die lineare Hülle von a und b ist.





>  
> Normalerweise mach ich das ja mit gleichungssystemen, aber
> hier gelingt es mir nicht, wie soll ich vorgehen? Danke!



Mit einem Gleichungssystem kannst Du das machen, aber was Dir nicht gelingt, sieht man erst , wenn Du uns zeigst, wie Du das machst.

FRED

Bezug
                
Bezug
Linearkombination von Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:07 Mo 27.10.2008
Autor: blumee

Hallo,

-1 = a + c + 2d

0 = 4a + b + 3c + 9d

0 = a + b + 3d

Es sind doch zu viele unbekannte?

Danke!

Bezug
                        
Bezug
Linearkombination von Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 14:13 Mo 27.10.2008
Autor: fred97


> Hallo,
>  
> -1 = a + c + 2d
>  
> 0 = 4a + b + 3c + 9d
>  
> 0 = a + b + 3d
>  
> Es sind doch zu viele unbekannte?


Wieso ? Diese Gleichungssystem hat Lösungen . Bringe es mal auf Stufenform

FRED



>  
> Danke!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]