matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenLinearkombination
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - Linearkombination
Linearkombination < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linearkombination: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:29 Di 26.05.2009
Autor: Foster

Aufgabe
Welche der folgenden Matrizen sind nicht
als Linearkombinationen der anderen darstellbar?

[mm] \vmat{ 1 & -1 \\ 1 & 2 } \vmat{ -1 & 2 \\ 3 & 1 } \vmat{ 2 & -3 \\ -3 & 2 } \vmat{ 1 & 1 \\ 1 & 6 } [/mm]

wie gehe ich hier vor? Bei einem Einheitsvektor ist mir klar was ich machen muß, aber nicht bei Matrizen. Ich hoffe ich bekomme einen kleinen Tipp.

        
Bezug
Linearkombination: Antwort
Status: (Antwort) fertig Status 
Datum: 07:52 Di 26.05.2009
Autor: kunzmaniac

Hallo,

Du kannst 2x2 Matrizen selbst wieder als Vektoren im Vektorraum der 2x2 Matrizen auffassen. Dann gilt wieder

[mm] \{m1, m2, ... mn\} [/mm] linear unabhängig, genau dann wenn:

a1*m1 + a2*m2 + ... + an*mn = 0 [mm] \Rightarrow [/mm] a1..an = 0.

alternativ kannst du die Matrizen auch als Vektoren des [mm] \IR^{}] [/mm] interpretieren.

viel Erfolg!



Bezug
        
Bezug
Linearkombination: Antwort
Status: (Antwort) fertig Status 
Datum: 09:09 Di 26.05.2009
Autor: angela.h.b.


> Welche der folgenden Matrizen sind nicht
>  als Linearkombinationen der anderen darstellbar?
>  
> [mm]\vmat{ 1 & -1 \\ 1 & 2 } \vmat{ -1 & 2 \\ 3 & 1 } \vmat{ 2 & -3 \\ -3 & 2 } \vmat{ 1 & 1 \\ 1 & 6 }[/mm]
>  
> wie gehe ich hier vor? Bei einem Einheitsvektor ist mir
> klar was ich machen muß, aber nicht bei Matrizen. Ich hoffe
> ich bekomme einen kleinen Tipp.

Hallo,

Du bewegst Dich jetzt in einem Vektorraum, dessen Vektoren (also Elemente) Matrizen sind.

Willst Du wissen, ob [mm] \pmat{ 1 & -1 \\ 1 & 2 } [/mm]  von den anderen dreien linear abhängig ist, mußt Du prüfen, ob man diesen Vektor (=Element des Vektorraumes) als Linearkombination der anderen drei darstellen kann, ob es also r,s,t [mm] \in \IR [/mm] gibt mit

[mm] \pmat{ 1 & -1 \\ 1 & 2 }=r\pmat{ -1 & 2 \\ 3 & 1 } +s\pmat{ 2 & -3 \\ -3 & 2 } +t\pmat{ 1 & 1 \\ 1 & 6 }. [/mm]

Für die anderen entsprechend.

Möchtest Du zunächst die lineare Unabhängigkeit der 4 Vekoren prüfen, so mußt Du schauen, ob aus

[mm] q\pmat{ 1 & -1 \\ 1 & 2 }+r\pmat{ -1 & 2 \\ 3 & 1 } +s\pmat{ 2 & -3 \\ -3 & 2 } +t\pmat{ 1 & 1 \\ 1 & 6 }=\pmat{ 0 & 0 \\ 0 & 0 } [/mm]  folgt, daß q=r=s=r=0 ist.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]