matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenLinearkombi Lösung DGL
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Linearkombi Lösung DGL
Linearkombi Lösung DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linearkombi Lösung DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:35 Mi 02.06.2010
Autor: Chaosnobbi

Hallo zusammen.

Mich beschäftigt momentan die Frage, weshalb man bei der Lösung von DGL n-ter Ordnung eine Linearkombination der einzelnen Lösungen betrachtet.

Nachdem man den e^Lambda - Ansatz gemacht hat, erhält man Lambda's, die die charakteristische Gleichung lösen. Und daher erhält man reelle oder komplexe e-Funktionen, die die DGL Lösen.
Die Lösung der DGL wird stets als Linearkombinationd er einzelnen Lösungen angegeben, leider steht nirgens warum man das tut. Vielleicht ist es auch einfach zu offensichtlich aber es beschäftigt mich.

Wäre echt klasse, wenn mir das jemand erklären würde

Einen sonnigen Tag wünsch ich!

        
Bezug
Linearkombi Lösung DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 14:44 Mi 02.06.2010
Autor: fred97

Ich nehme an, Du sprichst von homogenen linearen Differentialgleichungen n-ter Ordnung.

Die Menge aller Lösungen einer solchen Gleichung ist ein n -dimensionaler Vektorraum.

Das Verfahren von dem Du oben gesprochen hast, liefert Dir eine Basis [mm] y_1, ...,y_n [/mm]  dieses Vektorraumes.

Eine Lösung der DGL hat also die Form

              [mm] $y=c_1y_1+ ...+c_ny_n$ [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]