matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisLinearisierung einer Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Linearisierung einer Funktion
Linearisierung einer Funktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linearisierung einer Funktion: Aufgabenverständnis
Status: (Frage) beantwortet Status 
Datum: 00:21 Di 21.03.2006
Autor: Strenni

Aufgabe
Linearisieren Sie die Funktion y = f(x) = lg [mm] (x^{2} [/mm] + 1) an den Stellen x = 0 und x = 3. Wie lauten die Gleichungen der an diesen Stellen an den Graphen der Funktion angelegten Tangenten? Ersetzen Sie den Differenzenquotienten durch das Differential von f(x) und ermitteln Sie so Näherungswerte für f(0,1) und f(2,9). Vergleichen Sie mit den exakten Werten!

Der erste Teil der Aufgabe fiel mir noch relativ leicht:

mit T: y= [mm] f(x_{0}) [/mm] + [mm] f'(x_{0}) [/mm] (x - [mm] x_{0}) [/mm] errechne ich

für [mm] T_{1} [/mm] in  x = 0: [mm] y_{T_{1}} [/mm] = 0 und

für [mm] T_{2} [/mm] in  x = 3: [mm] y_{T_{2}} [/mm] = 0,6x - 0,8


Ich geh mal davon aus, dass die Tangenten passen. Also soweit, so gut. Nur was ist jetzt mit dem zweiten Aufgabenteil gemeint?

Der Differenzenquotient errechnet sich ja meines Wissens aus:

[mm] \bruch{\Delta y}{\Delta x} [/mm] = [mm] \bruch{y_{1} - y_{0}}{x_{1} - x_{0}} [/mm] = [mm] \bruch{f(x_{0} + h) - f(x_{0})}{h} [/mm]

Diesen soll ich nun durch das Differential von f(x) ersetzen und damit Näherungswerte bestimmen.

Das Differential lautet, wenn mich nicht alles täuscht:

f'(x) =  [mm] \bruch{2x}{ln10 (x^{2} + 1)} [/mm]

Aber wo, bzw. wie soll mir das jetzt weiterhelfen bei der Bestimmung der Näherungswerte? Vielleicht hat jemand von Euch einen Ansatz für mich.

        
Bezug
Linearisierung einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 06:39 Di 21.03.2006
Autor: mathiash

Hallo und guten Morgen,

ich finde die Aufgabenstellung recht komisch. Zuerst wird von den Tangenten gesprochen, und Deine
Formeln dazu sind richtig. Dann ist auf einmal die Rede vom Differenzenquotienten und dem Grenzwert, der Ableitung.

Na ja, mit dem letzterern (f(0,9) zB) ist wohl gemeint, dass Du den Wert der Tangente an f(x) im Punkt x=0
an der Stelle 9 mit dem Funktionswert f(9) vergleichen sollst.

Viele Gruesse,

Mathias

Bezug
                
Bezug
Linearisierung einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:10 Di 21.03.2006
Autor: Strenni

Hallo Mathias,

herzlichen Dank für Deine Antwort, aber ich denke, die Aufgabenstellung geht eher in Richtung mathemaduenn's Antwort. Trotzdem nochmal danke für's Reinfriemeln. ;)

Bezug
        
Bezug
Linearisierung einer Funktion: Alternativ
Status: (Antwort) fertig Status 
Datum: 07:52 Di 21.03.2006
Autor: mathemaduenn

Hallo Strenni,

> Der Differenzenquotient errechnet sich ja meines Wissens
> aus:
>  
>  
> Diesen soll ich nun durch das Differential von f(x)
> ersetzen und damit Näherungswerte bestimmen.
>  
> Das Differential lautet, wenn mich nicht alles täuscht:
>  
> f'(x) =  [mm]\bruch{2x}{ln10 (x^{2} + 1)}[/mm]
>  
> Aber wo, bzw. wie soll mir das jetzt weiterhelfen bei der
> Bestimmung der Näherungswerte? Vielleicht hat jemand von
> Euch einen Ansatz für mich.

Ich gehe mal davon aus das Du in die erste Formel rechts den Diff.quotienten ersetzten sollst.
[mm]\bruch{\Delta y}{\Delta x} =\bruch{y_{1} - y_{0}}{x_{1} - x_{0}} = f'(x_0)[/mm]
Für f(0,1), also den Funktionswert an der Stelle 0,1 , kannst Du nun [mm] x_0=0 [/mm] und [mm] x_1=0,1 [/mm] und [mm] y_0=f(0) [/mm] einsetzen und erhälst mit [mm] y_1 [/mm] eine Näherung für f(0,1).
Alles klar?
viele Grüße
mathemaduenn


Bezug
                
Bezug
Linearisierung einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:22 Di 21.03.2006
Autor: Strenni

Herzlichen Dank mathemaduenn, ich glaube, das ist nachvollziehbar. :)

Hab mich auch direkt mal an die Lösung gesetzt:

[mm] \bruch{\Delta y}{\Delta x} [/mm] = [mm] \bruch{ y_{1} - y_{0}}{ x_{1} - x_{0}} [/mm] = [mm] f'(x_{0}) [/mm] = [mm] \bruch{2x_{0}}{ln10(x_{0}^{2} + 1)} [/mm]

für f(0,1): [mm] x_{0} [/mm] = 0, [mm] x_{1} [/mm] = 0,1

[mm] \bruch{\Delta y}{\Delta x} [/mm] = [mm] \bruch{ y_{1} - 0}{ 0,1 - 0} [/mm] =  [mm] \bruch{2 * 0}{ln10(0^{2} + 1)} [/mm]

f(0,1) = [mm] y_{1} [/mm] = 0 als Näherungswert

f(0,1) = 0,0043213... als exakter Wert


für f(2,9): [mm] x_{0} [/mm] = 3, [mm] x_{1} [/mm] = 2,9

[mm] \bruch{\Delta y}{\Delta x} [/mm] = [mm] \bruch{ y_{1} - 1}{ 2,9 - 3} [/mm] =  [mm] \bruch{2 * 3}{ln10(3^{2} + 1)} [/mm]

f(2,9) = [mm] y_{1} [/mm] = 0,974 als Näherungswert

f(2,9) = 0,973589... als exakter Wert


Schaut auf jeden Fall nicht schlecht und auch nachvollziehbar aus. Also nochmal Danke für den Tipp! ;)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]