matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraLinearformen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Linearformen
Linearformen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linearformen: Frage
Status: (Frage) beantwortet Status 
Datum: 17:42 So 02.01.2005
Autor: Yellowbird

Hallo
Ich habe ein Problem mit folgender Aufgabe : " Es sei V der Vektorraum der Polynome über [mm] \IR [/mm] vom Grad kleiner oder gleich zwei. Wir definieren drei Linearformen auf V durch f1(p) = [mm] \integral_{0}^{1} [/mm] {p(x) dx}  ;   f2(p)= [mm] \integral_{0}^{2} [/mm] {p(x) dx} ; f3(p)= - [mm] ?integral_{-1}^{0} [/mm] {p(x)dx}
wobei p ein beliebiges Polynom aus V ist. Zeigen Sie, dass die Menge {f1,f2,f3} eine Basis von  [mm] V^{*} [/mm] ist und bestimmen Sie die Basis von V, zu der sie dual ist."

Irgendwie habe ich noch ziemliche Probleme mit diesen Lineraformen und sehe noch nicht genau den praktischen Bezug der ganzen Sache und bei der Aufgabe habe ich leider keine Ahnung wie ich da ran gehen muss. Kann mir da vielleicht jemand mit Ansätzen weiterhelfen?

        
Bezug
Linearformen: Vorgehensweise (Skizze)
Status: (Antwort) fertig Status 
Datum: 18:15 So 02.01.2005
Autor: moudi

Arbeite mit der Standardbasis [mm]e_1=1,e_2=x,e_3=x^2[/mm]. Definiere mit Hilfe der Funktionale [mm]p_j[/mm] eine Matrix [mm]a_{ij}=p_j(e_i)[/mm] und überelege dir, wie sich diese Matrix transformiert, wenn du einen Basiswechsel vornimmst (i.e. neue Basis [mm]f_1,f_2,f_3[/mm] dann [mm]b_{ij}=p_j(f_i)[/mm]).
Dann muss du die Transformationsmatrix des Basiswechsels so wählen, dass  [mm]b_{ij}[/mm] die Einheitsmatrix ist.

mfG Moudi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]