matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraLinearform/Vektorräume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Linearform/Vektorräume
Linearform/Vektorräume < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linearform/Vektorräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:54 Mi 03.05.2006
Autor: vicky

Aufgabe
Sei K ein Körper, in dem [mm] 1+1\not= [/mm] 0 gilt, und [mm] V_{i}, [/mm] 1 [mm] \le [/mm] i  [mm] \le [/mm] r endlich-dimensionale K-Vektorräume. Eine Abbildung  

f: [mm] V_{1} \times [/mm] ... [mm] V_{r} \to [/mm] K heißt r-Linearform, wenn sie in jedem Argument K-linear ist.

1. Zeigen Sie, dass die Menge aller r-Linearformen ein K-Vektorraum ist, und bestimmen Sie seine Dimension als Funktion der Dimension der Vektorräume [mm] V_{i}. [/mm]

Seien nun alle Vektorräume gleich, also [mm] V_{1} [/mm] = [mm] V_{2} [/mm] =...=  [mm] V_{r} [/mm] = V. Eine K-Linearform [mm] f:V^{r} \to [/mm] K heißt alternierend, wenn für jedes r-Tupel von Vektoren [mm] v_{i} \in [/mm] V gilt, dass [mm] f(v_{1},v_{2},...v_{r}) [/mm] = 0, sobald zwei [mm] v_{i} [/mm] gleich sind.

2. Sei nun r = [mm] dim_{K}V. [/mm] Zeigen Sie, dass der Raum aller alternierenden [mm] dim_{K}V [/mm] - Linearformen eindimensional ist.

3. Schließen Sie aus Teil 2, dass es für jeden Endomorphismus A von V genau einen Skalar d(A) [mm] \in [/mm] K gibt, so dass für jede alternierende r-Linearform f und alle [mm] v_{i}\in [/mm] V die Beziehung

[mm] f(Av_{1}, Av_{2},...,Av_{r}) [/mm] = [mm] d(A)f(v_{1},v_{2},...,v_{r}) [/mm]

erfüllt ist.

Wählen Sie nun eine Basis B von V und erhalten Sie einen Isomorphismus

[mm] M_{B}^{B}: [/mm] End(V) [mm] \to [/mm] M(r [mm] \times [/mm] r,K)

4. Zeigen Sie: Die Abbildung M(r  [mm] \times [/mm] r, K) [mm] \to [/mm] K
                                       M  [mm] \mapsto d((M_{B}^{B})^{-1} [/mm] M)

ist eine Determinantenabbildung.

Hallo zusammen,

habe hier eine ziemlich lange Aufgabe gestellt bekommen und weiß überhaupt nicht wo ich anfangen soll.
zu 1.  was bedeutet "wenn sie in jedem Argument K-linear ist"
Eigentlich muß ich doch hier die Vektorraumaxiome prüfen bzgl. der Addition und der skalaren Multiplikation? Da  es sich ja um einen K-Vektorraum handeln soll, kann man von diesem also auch die Dimension bestimmen doch wie gehe ich davor? Wahrscheinlich kann man die Dimensionsformel anwenden, oder?

Ich bin leider völlig überfragt, vielleicht könnt ihr mir einen Tipp geben, wie ich am besten anfangen kann...

Vielen Dank
Gruß Vicky

        
Bezug
Linearform/Vektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 18:45 Mi 03.05.2006
Autor: felixf

Hallo Vicky!

> Sei K ein Körper, in dem [mm]1+1\not=[/mm] 0 gilt, und [mm]V_{i},[/mm] 1 [mm]\le[/mm]
> i  [mm]\le[/mm] r endlich-dimensionale K-Vektorräume. Eine Abbildung
>  
>
> f: [mm]V_{1} \times[/mm] ... [mm]V_{r} \to[/mm] K heißt r-Linearform, wenn
> sie in jedem Argument K-linear ist.
>  
> 1. Zeigen Sie, dass die Menge aller r-Linearformen ein
> K-Vektorraum ist, und bestimmen Sie seine Dimension als
> Funktion der Dimension der Vektorräume [mm]V_{i}.[/mm]
>  
> Seien nun alle Vektorräume gleich, also [mm]V_{1}[/mm] = [mm]V_{2}[/mm] =...=
>  [mm]V_{r}[/mm] = V. Eine K-Linearform [mm]f:V^{r} \to[/mm] K heißt
> alternierend, wenn für jedes r-Tupel von Vektoren [mm]v_{i} \in[/mm]
> V gilt, dass [mm]f(v_{1},v_{2},...v_{r})[/mm] = 0, sobald zwei [mm]v_{i}[/mm]
> gleich sind.
>  
> 2. Sei nun r = [mm]dim_{K}V.[/mm] Zeigen Sie, dass der Raum aller
> alternierenden [mm]dim_{K}V[/mm] - Linearformen eindimensional ist.
>  
> 3. Schließen Sie aus Teil 2, dass es für jeden
> Endomorphismus A von V genau einen Skalar d(A) [mm]\in[/mm] K gibt,
> so dass für jede alternierende r-Linearform f und alle
> [mm]v_{i}\in[/mm] V die Beziehung
>  
> [mm]f(Av_{1}, Av_{2},...,Av_{r})[/mm] =
> [mm]d(A)f(v_{1},v_{2},...,v_{r})[/mm]
>  
> erfüllt ist.
>  
> Wählen Sie nun eine Basis B von V und erhalten Sie einen
> Isomorphismus
>  
> [mm]M_{B}^{B}:[/mm] End(V) [mm]\to[/mm] M(r [mm]\times[/mm] r,K)
>  
> 4. Zeigen Sie: Die Abbildung M(r  [mm]\times[/mm] r, K) [mm]\to[/mm] K
>                                         M  [mm]\mapsto d((M_{B}^{B})^{-1}[/mm]
> M)
>  
> ist eine Determinantenabbildung.
>  
> Hallo zusammen,
>  
> habe hier eine ziemlich lange Aufgabe gestellt bekommen und
> weiß überhaupt nicht wo ich anfangen soll.
> zu 1.  was bedeutet "wenn sie in jedem Argument K-linear
> ist"

Nehmen wir mal ein Beispiel mit zwei Argumenten: $f : [mm] V_1 \times V_2 \to [/mm] K$. Seien [mm] $v_1 \in V_1$ [/mm] und [mm] $v_2 \in V_2$. [/mm] Dann heisst ``$K$-linear in jedem Argument'', dass sowohl die Funktion [mm] $f(\bullet, v_2) [/mm] : [mm] V_1 \to [/mm] K$, $v [mm] \mapsto [/mm] f(v, [mm] v_2)$ [/mm] als auch die Funktion [mm] $f(v_1, \bullet) [/mm] : [mm] V_2 \to [/mm] K$, $v [mm] \mapsto f(v_1, [/mm] v)$ linear sein soll, und zwar fuer jedes (feste) [mm] $v_1$, $v_2$. [/mm]

Ein Beispiel kennst du: die Determinante [mm] $\det [/mm] : M(n [mm] \times [/mm] n; K) [mm] \to [/mm] K$. Wenn du die $n [mm] \times [/mm] n$-Matrizen zeilenweise aufschreibst, kannst du $M(n [mm] \times [/mm] n; K)$ mit [mm] $K^n \times \dots \times K^n$ [/mm] identifizieren ($n$ Faktoren im Produkt), wobei jeder [mm] $K^n$ [/mm] einer Zeile der Matrix entspricht. So aufgefasst ist die Determinante eine $n$-Linearform. Man umschreibt dies auch gerne mit ``Die Determinante ist linear in jeder Zeile'' (hast du vielleicht schonmal gehoert?).

>  Eigentlich muß ich doch hier die Vektorraumaxiome prüfen
> bzgl. der Addition und der skalaren Multiplikation? Da  es

Genau.

> sich ja um einen K-Vektorraum handeln soll, kann man von
> diesem also auch die Dimension bestimmen doch wie gehe ich
> davor? Wahrscheinlich kann man die Dimensionsformel
> anwenden, oder?

Nein, versuche am besten direkt eine Basis aufzustellen.

Etwa bei 1-Linearformen, die ja genau die linearen Abbildungen sind, hast du [mm] $\dim V_1$ [/mm] Basisvektoren: Definiere [mm] $f_1, \dots, f_n [/mm] : [mm] V_1 \to [/mm] K$ durch [mm] $f_i(e_i) [/mm] = 1$ und [mm] $f_i(e_j) [/mm] = 0$ fuer $i [mm] \neq [/mm] j$, wobei [mm] $e_i$ [/mm] irgendwelche Basisvektoren aus dem [mm] $V_1$ [/mm] sind.

Bei den 2-Linearformen hast du [mm] $\dim V_1 \cdot \dim V_2$ [/mm] Basisvektoren: Definiere [mm] $f_{i,j}$, [/mm] $i, j = 1, [mm] \dots, [/mm] n$ durch [mm] $f_{i,j}(e_k, e_\ell) [/mm] = 1$ falls $(i, j) = (k, [mm] \ell)$ [/mm] und $ = 0$ sonst.

Versuch das mal nachzuvollziehen. Dann solltest du damit auch alleine weiterkommen...

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]