matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesLinearfaktorzerlegung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Sonstiges" - Linearfaktorzerlegung
Linearfaktorzerlegung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linearfaktorzerlegung: Finden einer komplexen Nst.
Status: (Frage) beantwortet Status 
Datum: 16:35 Mi 07.11.2007
Autor: schumann

Aufgabe
Zerlegen Sie die flgenden polynome in Linearfaktoren:
...
...
p(x) [mm] =x^4 [/mm] - [mm] 2x^2+4 [/mm]

Hier habe ich wirklich Schwierigkeiten, eine Nullstelle zu erraten, um dann mit der Suche nach weiteren Nullstellen fortfahren zu können.

Ich bin der Meinung, dass hier nicht direkt (wenn überhaupt) eine reelle Nullstelle erratbar ist. Des weiteren habe ich versucht:

[mm] p(i)\not=0 [/mm]
[mm] p(2i)\not=0 [/mm]
[mm] p(-i)\not=0 [/mm]
[mm] p(-2i)\not=0 [/mm]

Wie finde ich in diesem Fall zuverlässig und vertretbar eine Nullstelle?

Danke

___

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Linearfaktorzerlegung: ohne Raten
Status: (Antwort) fertig Status 
Datum: 16:42 Mi 07.11.2007
Autor: Roadrunner

Hallo schumann!


Du kannst hier doch erst substituieren mit $z \ := \ [mm] x^2$ [/mm] und dann die MBp/q-Formel anwenden. Damit hast Du dann sogar alle Nullstellen.


Gruß vom
Roadrunner


Bezug
                
Bezug
Linearfaktorzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:45 Mi 07.11.2007
Autor: schumann

Danke! Na klar, da fällt es mir wie Schuppen von den Augen. Im Abi hätt ichs sicherlich gewusst...ist halt schon ne Weile her - das schmälert die Schmach aber nicht.

DANKE!

Bezug
                
Bezug
Linearfaktorzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:27 Mi 07.11.2007
Autor: schumann

Also das habe ich jetzt gemacht. Ich setze [mm] x^2=a, [/mm] bekomme dann als Lösungen der quadat. Gleichg.

[mm] a1=1+\wurzel{3}*i [/mm]
[mm] a2=1-\wurzel{3}*i [/mm] .

Die Resubstitution ist doch dann die Wurzel aus den obigen Ergebnissen, mit +/- davor, also 4 Ergebnisse. Sind das jetzt wirklich die Nullstellen der ursprünglichen Gleichung?

Bezug
                        
Bezug
Linearfaktorzerlegung: richtig erkannt
Status: (Antwort) fertig Status 
Datum: 18:38 Mi 07.11.2007
Autor: Roadrunner

Hallo schumann!


> Die Resubstitution ist doch dann die Wurzel aus den obigen
> Ergebnissen, mit +/- davor, also 4 Ergebnisse. Sind das
> jetzt wirklich die Nullstellen der ursprünglichen Gleichung?

[ok] Genau!


Gruß vom
Roadrunner



Bezug
                                
Bezug
Linearfaktorzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:44 Mi 07.11.2007
Autor: schumann

Gut notfalls könnte ich ja die Ergebnisse einsetzen, ob -> p(x)=0 daraus folgt...Werde ich noch tun.

appreciate your help, thanks!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]