matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraLinearfaktorzerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Linearfaktorzerlegung
Linearfaktorzerlegung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linearfaktorzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:23 So 18.02.2007
Autor: hans_hubert

Aufgabe
Zerlegen Sie das Ploynom [mm] z^3+z^2+5z+5 \in \IC [/mm] in Linearfaktoren.

Hallo,

ich habe bei dieser Aufgabe durch Polynomdivision die Nullstellen bestimmt und dann das Ganze als Produkt aufgeschrieben. also:
[mm] (x+1)*(x+\wurzel{5})*(x-\wurzel{5}). [/mm]
Dann ist mir das [mm] "\in \IC" [/mm] aufgefallen. Ist die Lösung trotzdem richtig oder muss ich das mit kompleyxen Zahlen anders machen?

Gruß

Hans

        
Bezug
Linearfaktorzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:43 So 18.02.2007
Autor: schachuzipus


> Zerlegen Sie das Ploynom [mm]z^3+z^2+5z+5 \in \IC[/mm] in
> Linearfaktoren.
>  Hallo,
>  
> ich habe bei dieser Aufgabe durch Polynomdivision die
> Nullstellen bestimmt und dann das Ganze als Produkt
> aufgeschrieben. also:
>  [mm](x+1)*(x+\wurzel{5})*(x-\wurzel{5}).[/mm]
> Dann ist mir das [mm]"\in \IC"[/mm] aufgefallen. Ist die Lösung
> trotzdem richtig oder muss ich das mit kompleyxen Zahlen
> anders machen?
>  
> Gruß
>  
> Hans

Hallo Hans,

wenn du deine Lösung [mm] (x+1)*(x+\wurzel{5})*(x-\wurzel{5}) [/mm] mal wieder ausmultiplizierst, kommst du nicht auf das Ausgangspolynom.

Aber der Ansatz mit Polynomdivision ist schon richtig:

Man kann z=-1 als Nullstelle "ablesen", also kann man den Linearfaktor (z+1) mittles Polynomdivision abspalten. Dann erhältst du ein neues Polynom 2ten Grades, das noch 2 komplexe Nullstellen hat.

Probier's mal


Gruß

schachuzipus

Bezug
                
Bezug
Linearfaktorzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:56 Mo 19.02.2007
Autor: hans_hubert

danke für die Antwort,

dann müssten die anderen Linearfaktoren [mm] (x-\wurzel{5}i) [/mm] und [mm] (x+\wurzel{5}i) [/mm] sein?

Gruß

Hans

Bezug
                        
Bezug
Linearfaktorzerlegung: stimmt so
Status: (Antwort) fertig Status 
Datum: 10:07 Mo 19.02.2007
Autor: Roadrunner

Hallo Hans_Hubert!


Das stimmt so [ok] . Und wenn Du jetzt anstelle von $x_$ jeweils $z_$ schreibst, ist es perfekt ;-) .


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]