matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraLinearfaktoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Algebra" - Linearfaktoren
Linearfaktoren < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linearfaktoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:17 Fr 04.02.2011
Autor: Vicky89

Hallo,

ich habe eine AUfgabe zu Zerfällungskörpern. Zuerst soll ich ein Polynom in Linearfaktoren zerlegen. (in [mm] \IZ_{13}) [/mm]
Ich habe zwar schon die Lösung, weiß aber nicht genau, wie ich da letztendlich drauf kome.
Und zwar geht es um das Polynom: [mm] x^{6}-7x^{4}+3x^{3}+3 [/mm]

als erstes habe ich die nullstellen 1 und -1 herausgefunden.
also ist die erste zerlegung
[mm] (x+1)(x-1)(x^{4}-x^{2}+3) [/mm]

[mm] (x^{4}-x^{2}+3) [/mm]
muss jetzt nochmal zerlegt werden in [mm] (x^{2}+2)(x^{2}+5) [/mm]
aber wie komme ich darauf?
es wurde gesagt, dass es mit substitution geht. aber irgendwie komme ich damit nicht weiter.

würde mich sehr über hilfe freuen.

Liebe Grüße

        
Bezug
Linearfaktoren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:52 Fr 04.02.2011
Autor: felixf

Moin,

> ich habe eine AUfgabe zu Zerfällungskörpern. Zuerst soll
> ich ein Polynom in Linearfaktoren zerlegen. (in [mm]\IZ_{13})[/mm]
>  Ich habe zwar schon die Lösung, weiß aber nicht genau,
> wie ich da letztendlich drauf kome.
>  Und zwar geht es um das Polynom: [mm]x^{6}-7x^{4}+3x^{3}+3[/mm]
>  
> als erstes habe ich die nullstellen 1 und -1
> herausgefunden.
> also ist die erste zerlegung
>  [mm](x+1)(x-1)(x^{4}-x^{2}+3)[/mm]
>  
> [mm](x^{4}-x^{2}+3)[/mm]
>  muss jetzt nochmal zerlegt werden in [mm](x^{2}+2)(x^{2}+5)[/mm]
>  aber wie komme ich darauf?

Das glaube ich nicht. Wenn du [mm] $(x^2 [/mm] + 2) [mm] (x^2 [/mm] + 5)$ ausmultiplizierst, steht hinten eine +10, und das ist auch modulo 13 nicht kongruent zu 3. (Jedoch zu -3.)

Aber nehmen wir mal an es stimmt.

Wenn du $y := [mm] x^2$ [/mm] substituierst, steht dort [mm] $y^2 [/mm] - y + 3$. Jetzt kannst du ganz gewohnt quadratische Ergaenzung machen und hast schliesslich sowas wie $(y + [mm] c)^2 [/mm] = d$ mit $c, d [mm] \in \IZ_{13}$. [/mm] Jetzt musst du [mm] $\sqrt{d}$ [/mm] in [mm] $\IZ_{13}$ [/mm] bestimmen -- bzw. herausfinden dass es das nicht gibt (in dem Fall ist [mm] $y^2 [/mm] - y + 3$ irreduzibel).

Wurzeln in endlichen Koerpern bestimmen macht nicht ganz so viel Spass, aber mit einem Taschenrechner bzw. mit Maple oder so geht es ganz gut alles durchzuprobieren ;-)

LG Felix


Bezug
                
Bezug
Linearfaktoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:07 Fr 04.02.2011
Autor: Vicky89

da hast du recht.
es sollte auch -3 heißen. ich habe mich auf meine zettel irgendwo verschrieben und das dann so übernommen. habe auch dauernd mit der falschen zahl gerechnet.
aber auch mit -3 komme ich nicht auf die lösung.

danke übrigens für die hilfe

Bezug
                        
Bezug
Linearfaktoren: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 Fr 04.02.2011
Autor: MathePower

Hallo Vicky89,

> da hast du recht.
> es sollte auch -3 heißen. ich habe mich auf meine zettel
> irgendwo verschrieben und das dann so übernommen. habe
> auch dauernd mit der falschen zahl gerechnet.
> aber auch mit -3 komme ich nicht auf die lösung.
>  
> danke übrigens für die hilfe


Das zu betrachtende Polynom muß doch

[mm]x^{4}-\blue{6}*x^{2}-3[/mm]

lauten


Gruss
MathePower

Bezug
                                
Bezug
Linearfaktoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:23 Fr 04.02.2011
Autor: Vicky89

oh nein...klar..das erklärt natürlich einiges...
ich hatte es auch so da stehen...
beim nächsten mal werde ich mehr drauf achten, was auf meinem zettel steht ;)
vielen dank!

Bezug
                                
Bezug
Linearfaktoren: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 18:47 Fr 04.02.2011
Autor: Vicky89

jetzt habe ich aber doch noch eine frage zu der aufgabe.
im zweiten teil der aufgabe soll nun der zerfällungskörper bestimmt werden.
jetzt habe ich g:= [mm] x^{2}+2 [/mm] und h:= [mm] x^{2}+5 [/mm]

wenn auch schwer, kann ich nachvollziehen, dass die nullstellen von g x und -x sind.
wie komme ich jetzt aber darauf, dass die nullstellen von h 3x und -3x sind?

und wieso ist [mm] 9x^{2}+5=9(x^{2}+2)? [/mm]

Bezug
                                        
Bezug
Linearfaktoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:29 Sa 05.02.2011
Autor: Vicky89

oh, ich kann es mir jetzt selber beantworten.
danke ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]