matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieLineares Kongruenzssystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Zahlentheorie" - Lineares Kongruenzssystem
Lineares Kongruenzssystem < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineares Kongruenzssystem: Lösungsweg
Status: (Frage) überfällig Status 
Datum: 14:38 So 14.01.2007
Autor: redeemer

Hallo,
ich habe hier zwei lineare Kongruenzen: 9*i + j KONGR 19 mod 26 und 13*i + j KONGR 21 mod 26.
Lösen kann man dieses System, da ggT(4,26) | (21-19), das sagt mir auch, dass es hier zwei Lösungen gibt.

Wenn ich da jetzt rechne, komme ich zu dem ergebnis i KONGR 7 mod 13 und j KONGR 8 mod 13. Das Ergebnis ist aber: i KONGR 7 mod 26, j KONGR 8 mod 26 und i KONGR 20 mod 26, j KONGR 21 mod 26.

Ich habe schon ewig gegoogled und nichts dazu gefunden.
Kann mir evtl jemand ein bisschen ausführlicher den Lösungsweg dazu notieren?

Vielen Dank

MfG
red

PS:
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lineares Kongruenzssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 11:19 Mo 15.01.2007
Autor: felixf

Hallo!

>  ich habe hier zwei lineare Kongruenzen: 9*i + j KONGR 19
> mod 26 und 13*i + j KONGR 21 mod 26.
>  Lösen kann man dieses System, da ggT(4,26) | (21-19), das
> sagt mir auch, dass es hier zwei Lösungen gibt.
>  
> Wenn ich da jetzt rechne, komme ich zu dem ergebnis i KONGR
> 7 mod 13 und j KONGR 8 mod 13.

Dies wuerde vier Paare $(i, j)$ fuer Loesungen in [mm] $\IZ/26\IZ$ [/mm] liefern. Jedoch ist $j [mm] \equiv [/mm] 19 - 9 [mm] \cdot [/mm] i [mm] \pmod{26}$ [/mm] und somit gibt es zu jedem $i$ hoechstens ein $j$. Damit bekommst du dann das Ergebnis:

> Das Ergebnis ist aber: i KONGR 7 mod 26, j KONGR 8 mod 26 und
> i KONGR 20 mod 26, j KONGR 21 mod 26.

LG Felix


Bezug
        
Bezug
Lineares Kongruenzssystem: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mo 29.01.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]