matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisLineares Gleichungssystem/Gauß
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Lineares Gleichungssystem/Gauß
Lineares Gleichungssystem/Gauß < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineares Gleichungssystem/Gauß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:06 Di 31.08.2004
Autor: Alice

Hallo liebe Matheräumler!

Folgendes Gleichungssystem möchte ich lösen:

  [mm] x_{1}+ x_{2}+2* x_{3}=1 [/mm]
[mm] 2*x_{1}- x_{2}+ \alpha* x_{3}=0 [/mm]
[mm] 2*x_{1}- x_{2}- x_{3}=0 [/mm]

so, ich habe den Gauß-Algorthmus angewandt:

[mm] \vmat{ 1 & 1 & 2 & 1 \\ 2 & -1 & \alpha & 0 \\ 2 & -1 & -1 & 0 } [/mm]

ich habe ich die zweite und dritte zeile vertauscht und die neue dritte dann mit -1*II addiert. So ergibt sich:

[mm] \vmat{ 1 & 1 & 2 & 1 \\ 2 & -1 & -1 & 0 \\ 0 & 0 & \alpha+1 & 0 } [/mm]

So, jetzt zu meiner Lösung bzw. zu der Begründung:

Eindeutige Lösungen existieren für  [mm] \alpha \not=-1 [/mm]
Bei [mm] \alpha=-1 [/mm] wäre durch die Nullzeile das Gleichungssystem unterbestimmt.

Hmm, also ich tuh mich mit den Begründungen etwas schwer, bin mir auch nicht so supersicher, ob ich alles richtig Begriffen habe. Ich würde mich sehr freuen, wenn sich jemand finden würde, der meine Begründung kommentiert!

Vielen Dank schonmal!

        
Bezug
Lineares Gleichungssystem/Gauß: Antwort
Status: (Antwort) fertig Status 
Datum: 12:29 Di 31.08.2004
Autor: Marc

Hallo Alice!
  

> Folgendes Gleichungssystem möchte ich lösen:
>  
> [mm]x_{1}+ x_{2}+2* x_{3}=1[/mm]
>  [mm]2*x_{1}- x_{2}+ \alpha* x_{3}=0[/mm]
>  
> [mm]2*x_{1}- x_{2}- x_{3}=0[/mm]
>  
> so, ich habe den Gauß-Algorthmus angewandt:
>  
> [mm]\vmat{ 1 & 1 & 2 & 1 \\ 2 & -1 & \alpha & 0 \\ 2 & -1 & -1 & 0 }[/mm]
>  
>
> ich habe ich die zweite und dritte zeile vertauscht und die
> neue dritte dann mit -1*II addiert. So ergibt sich:
>  
> [mm]\vmat{ 1 & 1 & 2 & 1 \\ 2 & -1 & -1 & 0 \\ 0 & 0 & \alpha+1 & 0 }[/mm]

[ok] allerdings bringt der Gauss-Algorithmus die Matrix ja mindestens auf Dreiecksgestalt, die du hier noch nicht erreicht hast.

> So, jetzt zu meiner Lösung bzw. zu der Begründung:
>  
> Eindeutige Lösungen existieren für  [mm]\alpha \not=-1[/mm]
>  Bei
> [mm]\alpha=-1[/mm] wäre durch die Nullzeile das Gleichungssystem
> unterbestimmt.

Diese Überlegungen solltest du erst anstellen, wenn das LGS auf Dreiecksgestalt gebracht worden ist. Es könnte doch zum Beispiel sein, dass die zweite Gleichung einen Widerspruch enthält, dann ist das LGS für alle Belegungen von [mm] \alpha [/mm] unlösbar.
  

> Hmm, also ich tuh mich mit den Begründungen etwas schwer,
> bin mir auch nicht so supersicher, ob ich alles richtig
> Begriffen habe. Ich würde mich sehr freuen, wenn sich
> jemand finden würde, der meine Begründung kommentiert!

Ich mache eben noch den einen Schritt:

[mm]\left(\begin{array}{ccc|c}1 & 1 & 2 & 1 \\ 0 & -3 & -5 & -2 \\ 0 & 0 & \alpha+1 & 0 \end{array}\right)[/mm]

Jetzt erst kannst du so wie oben argumentieren:

Für [mm] \alpha+1=0 [/mm] gibt es unendliche viele Lösungen.
Für [mm] \alpha+1\not=0 [/mm] gibt es genau eine Lösung.
Der Fall, dass das LGS nicht lösbar ist, kann nicht eintreten.

Allgemein findet man so die Lösbarkeit eine LGS:
Angenommen, wir haben ein LGS in Dreiecksgestalt vorliegen, und die Fragezeichen auf der Hauptdiagonalen sind alle [mm] \not=0: [/mm]
[mm]\left(\begin{array}{ccc|c}? & ? & ? & ? \\ 0 & ? & ? & ? \\ 0 & 0 & X & Y \end{array}\right)[/mm]

X=0, Y=0: unendlich viele Lösungen (es entsteht ja eine Nullzeile)
X=0, [mm] Y\not=0: [/mm] keine Lösung
sonst: genau eine Lösung

Viele Grüße,
Marc

Bezug
                
Bezug
Lineares Gleichungssystem/Gauß: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:36 Di 31.08.2004
Autor: Alice

Hallo Marc,

danke für deine Antwort, echt super!

Jetzt hab ich endlich das System kapiert, vielen vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]