Lineares Funktional < Algebraische Geometrie < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:41 Fr 14.06.2013 | Autor: | Physy |
Hallo, wie haben Polyeder als Lösungsmenge eines linearen Ungleiungssystems definiert. Also P:={x [mm] \in \IR^{n} [/mm] | [mm] f_{i}(x) [/mm] >= [mm] b_{i} [/mm] für i = 1,...,M} mit [mm] f_{i} [/mm] sind lineare funktionale. Mir geht es hier um den Begriff "linear". Wenn man sagt, dass es sich um ein lineares Ungleichungssystem handelt, dann heißt das, dass die unbekannten nur in der ersten Potenz auftauchen. Wenn ich sage, es sei ein lineares Funktional, dann meine ich, dass die Funktion f eine lineare Abbildung ist. Stimmt das?
Vielen Dank :)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:08 Fr 14.06.2013 | Autor: | meili |
Hallo,
> Hallo, wie haben Polyeder als Lösungsmenge eines linearen
> Ungleiungssystems definiert. Also [mm] $P:=\{x \in \IR^{n} | f_{i}(x) \ge b_{i} \mbox{ für } i = 1,...,M\}$ [/mm] mit [mm]f_{i}[/mm] sind lineare
> funktionale. Mir geht es hier um den Begriff "linear". Wenn
> man sagt, dass es sich um ein lineares Ungleichungssystem
> handelt, dann heißt das, dass die unbekannten nur in der
> ersten Potenz auftauchen. Wenn ich sage, es sei ein
> lineares Funktional, dann meine ich, dass die Funktion f
> eine lineare Abbildung ist. Stimmt das?
Ja.
Wenn es lineares Funktional heißt, so ist es eine lineare Abbildung
von einem K-Vektorraum in den Körper K.
>
> Vielen Dank :)
Gruß
meili
|
|
|
|