matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenLineares Differenzialgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Lineares Differenzialgleichung
Lineares Differenzialgleichung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineares Differenzialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:16 Fr 19.12.2008
Autor: mikemodanoxxx

Aufgabe
[Dateianhang nicht öffentlich]

Hi,

ich habe die Eigenwerte und Eigenvektoren der obigen Matrix bestimmt, also:

A = [mm] \pmat{ 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 } [/mm]

Habe jetzt 1 als doppelten EW und 4 raus. Wie kann ich denn jetzt die DGLs lösen anhand mit Hilfe der Eigenvektoren?

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Lineares Differenzialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:50 Fr 19.12.2008
Autor: MathePower

Hallo mikemodanoxxx,

> [Dateianhang nicht öffentlich]
>  Hi,
>  
> ich habe die Eigenwerte und Eigenvektoren der obigen Matrix
> bestimmt, also:
>  
> A = [mm]\pmat{ 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 }[/mm]
>  
> Habe jetzt 1 als doppelten EW und 4 raus. Wie kann ich denn
> jetzt die DGLs lösen anhand mit Hilfe der Eigenvcektoren?


Bestimme zunächst die Eigenräume Kern[mm]\left(A-I\right)[/mm] und Kern[mm]\left(A-4I\right)[/mm].

Sind die Eigenvektoren zu Kern[mm]\left(A-I\right)[/mm] gegeben durch
[mm]\overrightarrow{e_{1}}, \ \overrightarrow{e_{2}}[/mm] und der Eigenvektor zu Kern[mm]\left(A-4I\right)[/mm] gegeben durch [mm]\overrightarrow{e_{3}}[/mm].

Dann ergibt sich die Lösung zu:

[mm]\overrightarrow{y}\left(t\right)=c_{1}*\overrightarrow{e_{1}}*e^{t}+c_{2}*\overrightarrow{e_{2}}*e^ {t}+c_{3}*\overrightarrow{e_{3}}*e^ {4t}[/mm]


Gruß
MathePower

Bezug
                
Bezug
Lineares Differenzialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:47 Fr 19.12.2008
Autor: mikemodanoxxx

Hi.

Wie genau kommt denn das zu Stande? Wenn man im Vergleich dazu eine lineare homogene DGL betrachtet sieht man ja die Gemeinsamkeiten. Eigenwerte sind wie die Nullstellen des charakteristischen Polynoms usw. Allerdings ist lineare Algebra schon eine Weile her und darauf wäre ich jetzt nicht gekommen.

y(t)= [mm] c_{1}e^{t}\vektor{-1 \\ 1 \\ 0} [/mm] + [mm] c_{2}te^{t}\vektor{-1 \\ 0 \\ 1} [/mm] + [mm] c_{3}e^{4t}\vektor{1 \\ 1 \\ 1} [/mm]

wäre jetzt meine Lösung. Bei Aufgabe b soll nun diejenige Lösung bestimmt werden, die das AWP Problem y(0) = [mm] \vektor{-1 \\ 2 \\ 2} [/mm] löst. Wenn ich das in die DGL einsetze kommt bei mir aber folgendes raus:

[mm] c_{1}\vektor{-1 \\ 1 \\ 0} [/mm] + [mm] c_{3}\vektor{1 \\ 1 \\ 1} [/mm] = [mm] \vektor{-1 \\ 2 \\ 2} [/mm]

und das System ist nicht lösbar. Was mache ich falsch? Außerdem bekomme ich auf diese Weise ja gar keine Lösung für die Variable [mm] c_{2} [/mm]

Die EW und EV müssten stimmen, die habe ich auch in einen Eigenwertrechner eingegeben und da kam das gleiche raus.

Bezug
                        
Bezug
Lineares Differenzialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:19 Fr 19.12.2008
Autor: Marcel08

Hallo mikemodanoxxx!



Du löst die folgende Matrix mit Hilfe des Gaußschen Algorithmus´


[mm] \pmat{ 1 & -1 & -1 & -1 \\ 1 & 1 & 0 & 2 \\ 1 & 0 & 1 & 2} [/mm]



Wir subtrahieren die dritte Zeile von der zweiten und erhalten


[mm] \pmat{ 1 & -1 & -1 & -1 \\ 1 & 1 & 0 & 2 \\ 0 & 1 & -1 & 0} [/mm]



Nun subtrahieren wir die zweite Zeile von der ersten. Es ergibt sich


[mm] \pmat{ 1 & -1 & -1 & -1 \\ 0 & -2 & -1 & -3 \\ 0 & 1 & -1 & 0} [/mm]



Subtraktion des 2- fachen der dritten Zeile von der zweiten liefert


[mm] \pmat{ 1 & -1 & -1 & -1 \\ 0 & -2 & -1 & -3 \\ 0 & 0 & -3 & -3} [/mm]



Im Zuge der Rückwärtssubstitution erhalten wir


[mm] c_{1}=c_{2}=c_{3}=1 [/mm]



Bezüglich der Lösung des Anfangswertproblems [mm] \vec{y}(0)= \vektor{-1 \\ 2 \\ 2} [/mm]  erhalten wir also final


[mm] \vec{y}=\vektor{1 \\ 1 \\ 1}e^{4x}+\vektor{-1 \\ 1 \\ 0}e^{x}+\vektor{-1 \\ 0 \\ 1}e^{x}. [/mm]





Gruß, Marcel




Bezug
                                
Bezug
Lineares Differenzialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:10 Fr 19.12.2008
Autor: mikemodanoxxx

danke

Bezug
                        
Bezug
Lineares Differenzialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:50 Fr 19.12.2008
Autor: MathePower

Hallo mikemodanoxxx,

> Hi.
>  
> Wie genau kommt denn das zu Stande? Wenn man im Vergleich
> dazu eine lineare homogene DGL betrachtet sieht man ja die
> Gemeinsamkeiten. Eigenwerte sind wie die Nullstellen des
> charakteristischen Polynoms usw. Allerdings ist lineare
> Algebra schon eine Weile her und darauf wäre ich jetzt
> nicht gekommen.
>  
> y(t)= [mm]c_{1}e^{t}\vektor{-1 \\ 1 \\ 0}[/mm] +
> [mm]c_{2}te^{t}\vektor{-1 \\ 0 \\ 1}[/mm] + [mm]c_{3}e^{4t}\vektor{1 \\ 1 \\ 1}[/mm]


Nun, wie kommt man darauf:

Die obige Lösung gilt ja nur, wenn die Dimension des Eigenraums Kern[mm]\left(A-I\right)[/mm] gleich 1 ist.

Ist die Dimension des Eigenraums zu Kern[mm]\left(A-I\right)[/mm], wie hier, gleich 2, so gibt es zwei linear unabhängige Eigenvektoren und demzufolge auch die Lösung:


[mm]y(t)= c_{1}e^{t}\vektor{-1 \\ 1 \\ 0} + c_{2}e^{t}\vektor{-1 \\ 0 \\ 1} + c_{3}e^{4t}\vektor{1 \\ 1 \\ 1}[/mm]



>  
> wäre jetzt meine Lösung. Bei Aufgabe b soll nun diejenige
> Lösung bestimmt werden, die das AWP Problem y(0) =
> [mm]\vektor{-1 \\ 2 \\ 2}[/mm] löst. Wenn ich das in die DGL
> einsetze kommt bei mir aber folgendes raus:
>  
> [mm]c_{1}\vektor{-1 \\ 1 \\ 0}[/mm] + [mm]c_{3}\vektor{1 \\ 1 \\ 1}[/mm] =
> [mm]\vektor{-1 \\ 2 \\ 2}[/mm]
>  
> und das System ist nicht lösbar. Was mache ich falsch?
> Außerdem bekomme ich auf diese Weise ja gar keine Lösung
> für die Variable [mm]c_{2}[/mm]
>  
> Die EW und EV müssten stimmen, die habe ich auch in einen
> Eigenwertrechner eingegeben und da kam das gleiche raus.


Gruß
MathePower

Bezug
                                
Bezug
Lineares Differenzialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:21 Fr 19.12.2008
Autor: mikemodanoxxx

War vielleicht etwas doof formuliert von mir. Mir ging es eher generell um die Frage, wieso man durch Eigenwerte und Eigenvektoren auf die Lösung der DGL schließen kann.

Aber danke, ich habe da irgendwie ein t in deiner Gleichung gelesen, war ein Flüchtigkeitsfehler.

Bezug
                                        
Bezug
Lineares Differenzialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:34 Fr 19.12.2008
Autor: MathePower

Hallo mikemodanoxxx,

> War vielleicht etwas doof formuliert von mir. Mir ging es
> eher generell um die Frage, wieso man durch Eigenwerte und
> Eigenvektoren auf die Lösung der DGL schließen kann.

In der Regel sucht man für das System

[mm]y'=Ay[/mm]

eine Matrix T, die das System in ein einfach zu lösendes System überführt.

Durch die Transformation [mm]y=T\tilde{y}[/mm] wird das System überführt in

[mm]\tilde{y}'=T^{-1}AT\tilde{y}[/mm]

Dies ist genau dann ein einfach zulösendes System, wenn T die Matrix aus Eigenvektoren ist.


>  
> Aber danke, ich habe da irgendwie ein t in deiner Gleichung
> gelesen, war ein Flüchtigkeitsfehler.


Gruß
MathePower

Bezug
                                                
Bezug
Lineares Differenzialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:09 Sa 20.12.2008
Autor: mikemodanoxxx

dankeschön

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]