matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeLineare gleichungssysteme
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Gleichungssysteme" - Lineare gleichungssysteme
Lineare gleichungssysteme < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare gleichungssysteme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:33 Mo 13.11.2006
Autor: SUNNY000

Hallo, ich habe ein großes problem mit einer aufgabe und weiß nicht genau, wie ich anfangen soll. Kann mir vielleicht bitte jemand auf die sprünge helfen?

(K ist ein Körper)
Untersuchen Sie für K = [mm] \IR, [/mm] ob ein lineares Gleichungssystem mit
2 Gleichungen in 3 Unbekannten über K eine Lösungsmenge mit genau 4 Elementen haben kann.
(Jeweils müssen Sie ein Beispiel eines solchen Systems angeben oder die Unmöglichkeit begründen.)

Mein Problem ist, dass mir kein vernünftiger Ansatz einfällt unglücklich

Das Problem ist hier, dass ich ja ein Beispiel finden muss, bei dem es der Fall ist oder widerlege, dass dieser Fall NIE eintreten kann.

Würde mich freuen, wenn jemand einen Ansatz für mich hätte.....


        
Bezug
Lineare gleichungssysteme: affiner Unterraum
Status: (Antwort) fertig Status 
Datum: 15:26 Di 14.11.2006
Autor: moudi

Hallo Sunny

Die Lösung eines Gleichungssystems mit Koeffizienten in K mit 3 Unbekannten aus K ist ein affiner Unterraum des [mm] $K^3$. [/mm] Wenn K ein unendlicher Körper ist, kann ein affiner Unterraum von [mm] $K^3$ [/mm] nicht genau 4 Elemente enthalten.

mfG Moudi



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]