matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeLineare Unabhängigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Gleichungssysteme" - Lineare Unabhängigkeit
Lineare Unabhängigkeit < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:53 Do 18.12.2008
Autor: Aldiimwald

Aufgabe
(Der Adventskalender)
Wie viele der folgenden 4 Vektoren des [mm] \IR^6 [/mm] sind linear unabhängig? Begründen Sie Ihre Aussage.

[mm] a_{1} [/mm] = (1 2 3 4 5 [mm] 6)^T [/mm]
[mm] a_{2} [/mm] = (7 8 9 10 11 [mm] 12)^T [/mm]
[mm] a_{3} [/mm] = (13 14 15 16 17 [mm] 18)^T [/mm]
[mm] a_{4} [/mm] = (19 20 21 22 23 [mm] 24)^T [/mm]

Ich habe diese Vektoren dann erstmal Transponiert in eine Matrix geschrieben:

[mm] \pmat{ 1 & 7 & 13 & 19 \\ 2 & 8 &14 & 20 \\ 3 & 9 &15 & 21 \\ 4 & 10 &16 & 22 \\ 5 & 11 &17 & 23 \\ 6 & 12 &18 & 24} [/mm]

jetzt sieht man, dass die erste und fünfte Zeile linear unabhängig sind, oder?

Aber kann es das schon gewesen sein?

        
Bezug
Lineare Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:58 Do 18.12.2008
Autor: Astor

Hallo,
also man kann nur eine Menge von Vektoren auf lineare Unabhängigkeit untersuchen. Ein einzelner Vektor ist immer l.u.
Nun sind vier Vektoren gegeben. Das sind jeweils Vektoren mit 6 Komponenten. Am besten wendet man den Gaussschen Algorithmus an.
Grauß Astor

Bezug
                
Bezug
Lineare Unabhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:03 Do 18.12.2008
Autor: fred97


> Hallo,
>  also man kann nur eine Menge von Vektoren auf lineare
> Unabhängigkeit untersuchen. Ein einzelner Vektor ist immer
> l.u.


Das stimmt nicht ! Der Nullvektor ist immer lin. abh.

FRED


>  Nun sind vier Vektoren gegeben. Das sind jeweils Vektoren
> mit 6 Komponenten. Am besten wendet man den Gaussschen
> Algorithmus an.
>  Grauß Astor


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]