matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraLineare Unabhängigkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - Lineare Unabhängigkeit
Lineare Unabhängigkeit < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Unabhängigkeit: Tipp
Status: (Frage) beantwortet Status 
Datum: 00:23 Mi 08.11.2006
Autor: Nami

Hallo,
ich habe hier eine Frage:

Sei L ein Körper und K ein Teilkörper von L. Sei VL ein L-Vektorraum, mit VK wollen wir den gleichen Raum aufgefasst als K-Vektorraum bezeichnen. Darüber hinaus sei (vi) i element I eine Familie von Vektoren in V. Wie kann man zeigen, dass die folgende Aussage richtig oder falsch sind?
1. (vi) i element I ist linear unabhängig in Vk, daraus folgt, dass (vi) i element I ist linear unabhängig in VL.
2. (vi) i element I ist ein Erzeugendensystem in Vk, daraus folgt, dass (vi) i element I ist ein Erzeugendensystem in VL.

Liebe Leute, ich habe wirklich keine Ahnung, wie man damit anfangen soll. Könnt ihr für mich mal erklären? Danke.

Grüsse,
Nami

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lineare Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:18 Mi 08.11.2006
Autor: statler

Mahlzeit Nami!

> Sei L ein Körper und K ein Teilkörper von L. Sei VL ein
> L-Vektorraum, mit VK wollen wir den gleichen Raum
> aufgefasst als K-Vektorraum bezeichnen. Darüber hinaus sei
> (vi) i element I eine Familie von Vektoren in V. Wie kann
> man zeigen, dass die folgende Aussage richtig oder falsch
> sind?
>  1. (vi) i element I ist linear unabhängig in Vk, daraus
> folgt, dass (vi) i element I ist linear unabhängig in VL.

Das ist falsch! Nimm K = [mm] \IR, [/mm] L = [mm] \IC [/mm] und V = [mm] \IC. [/mm] Dann sind 1 und i über K lin. unabhängig, über L nicht.

>  2. (vi) i element I ist ein Erzeugendensystem in Vk,
> daraus folgt, dass (vi) i element I ist ein
> Erzeugendensystem in VL.

Das ist so, weil jede Lin.-komb. mit Koeffizienten in K auch eine Lin.-komb. mit Koeffizienten in L ist.

Gruß aus HH-Harburg
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]