matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenLineare Transformation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Lineare Transformation
Lineare Transformation < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Transformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:33 So 10.05.2009
Autor: kilchi

Aufgabe
Sind die folgenden Transformationen linear? Wenn ja, geben Sie die Standartmatrix an.

1.) T: [mm] \IR^{2} [/mm] -> [mm] \IR^{2}, T(x_{1},x_{2}) [/mm] = [mm] (2x_{1}-x_{2}, x_{1}+ x_{2}) [/mm]

2.) T: [mm] \IR^{3} [/mm] -> [mm] \IR^{3},T(x_{1},x_{2},x_{3}) =(x_{1}-x_{3},x_{1}^{2}+x_{2}x_{3},x_{1}) [/mm]

Hallo Zusammen

Wie finde allgemein heraus, ob diese Aufgaben linear sind oder nicht? Leider komme ich mit den vorhandenen Unterlagen und den "internetrecherchen" nicht weiter. Immerhin, bei der ersten hätte ich dann eine Standartmatrix herausgefunden, also nehme ich an, dass das eine Lineare Transformation sein muss.

Für eure Hilfe bin ich euch sehr dankbar!


[mm] \pmat{ 2 & -1 \\ 1 & 1 } [/mm]


        
Bezug
Lineare Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 So 10.05.2009
Autor: barsch

Hi,

> Sind die folgenden Transformationen linear? Wenn ja, geben
> Sie die Standartmatrix an.
>  
> 1.) T: [mm]\IR^{2}[/mm] -> [mm]\IR^{2}, T(x_{1},x_{2})[/mm] = [mm](2x_{1}-x_{2}, x_{1}+ x_{2})[/mm]
>  
> 2.) T: [mm]\IR^{3}[/mm] -> [mm]\IR^{3},T(x_{1},x_{2},x_{3}) =(x_{1}-x_{3},x_{1}^{2}+x_{2}x_{3},x_{1})[/mm]
>  
> Hallo Zusammen
>  
> Wie finde allgemein heraus, ob diese Aufgaben linear sind
> oder nicht?

stören wir uns einfach mal nicht an dem Begriff Transformation.

Wenn die Abbildung [mm] T:\IR^2\to\IR^2,T(x_{1},x_{2})=(2x_{1}-x_{2},x_{1}+ x_{2}) [/mm] linear ist, dann muss doch nach Definition gelten:

[mm] \forall{x=\vektor{x_1 \\ x_2},y=\vektor{y_1\\y_2}}\in\IR^2, \alpha,\beta\in\IR [/mm] gilt:

[mm] T(\alpha*\vektor{x_1 \\ x_2}+\beta*\vektor{y_1\\y_2})=\alpha*T(\vektor{x_1 \\ x_2})+\beta*T(\vektor{y_1\\y_2}) $\red{(\*)}$ [/mm]

Bei der zweiten Abbildung musst du auch prüfen, ob [mm] $\red{(\*)}$ [/mm] gilt.

> Leider komme ich mit den vorhandenen Unterlagen
> und den "internetrecherchen" nicht weiter. Immerhin, bei
> der ersten hätte ich dann eine Standartmatrix
> herausgefunden, also nehme ich an, dass das eine Lineare
> Transformation sein muss.
>  
> Für eure Hilfe bin ich euch sehr dankbar!
>  
>
> [mm]\pmat{ 2 & -1 \\ 1 & 1 }[/mm]

Hast du das mit der Standardmatrix verstanden? Du hast sie ja gefunden. Fragt sich nur wie ;-) - geraten oder verstanden (nicht böse gemeint. - Ist nur besser, wenn du es verstanden hast und auch bei anderen Aufgaben weißt, wie du darauf kommst.)

MfG barsch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]