matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikLineare Reibungskraft
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Physik" - Lineare Reibungskraft
Lineare Reibungskraft < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Reibungskraft: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:40 Do 15.03.2007
Autor: Salamence

Drei Punkte sind gegeben: A (0/15), B (30/0) und C (50/6)
Ein Auto hat im Punkt die Geschwindigkeit 3 m/s. Gesucht ist die Geschwindigkeit im Punkt C mit einer linear ansteigenden Reibungskraft von anfangs 120 N.

Ich weiß, wie ich das berechnen kann, wenn die Reibungskraft konstant ist, jedoch habe ich keine Ahnung, wie das mit einer unkonstanten Reibungskraft geht.

        
Bezug
Lineare Reibungskraft: Antwort
Status: (Antwort) fertig Status 
Datum: 20:00 Do 15.03.2007
Autor: Event_Horizon

Hallo!

Die Reibungskraft kannst du ja in eine (negative) Beschleunigung umrechnen.



Jetzt denk mal an die st, vt und at-Diagramme.

$a= const.$

$v=at$

Das heißt, die Geschwindigkeit ist gleich der Fläche, die die Funktion der Beschleunigung im at-Diagramm  zeigt (Das ist ja ein rechteck mit Breite t und Höhe a).

Die Strecke s ist dann die Fläche unter der Kurve im vt-Diagramm. Bei unbeschleunigten Bewegungen einfach wieder ein Rechteck s=vt. Bei ner beschleunigten Bewegung wäre das ein Dreieck mit Höhe $v_max=at$ und breite t. Da es ein Dreieck ist, gilt höhe x Breite / 2, also 1/2 *at*t= 1/2at²


Jetzt zu deinem Problem: a ist nun eine Grade mit negativer Steigung im at-Diagramm: [mm] $a(t)=-a_0-bt$ [/mm] Und v besteht aus der Anfangsgeschwindigkeit abzüglich eben der Fläche im at-Diagramm. v ist demnach auch quadratisch von t abhängig, und s kubisch.

Kommst du damit weiter, oder soll ich es lieber z.B. anhand der Differenzial- und INtegralrechnung erklären?




P.S.: ICh bin davon ausgegangen, daß sich die Reibung linear zur Zeit ändert, nicht zur Strecke. Das wäre weitaus komplizierter.


Bezug
                
Bezug
Lineare Reibungskraft: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:17 Do 15.03.2007
Autor: Salamence

Ich glaube, ich habe mich missverständlich ausgedrückt. Oder ich verstehe deine Antwort einfach nicht. Also Punkt A befindet sich in einer Höhe von 15 m, 30 m entfernt von A ist der Punkt B, in einer Höhe von 0 m, C befindet sich 20 m entfernt von B in einer Höhe von 6 m. Und im Punkt A ist die Geschwindigkeit des Wagens 3 m/s. Mit Hilfe der Energieerhaltung kann ich die Geschwindigkeit in Punkt C ausrechnen, wenn die Reibungskraft konstant bzw. nicht vorhanden ist. Aber wie mach ich das bei einer linearen Reibungskraft? Und ich glaube, dass die Reibungskraft linear zur Strecke verändert, da keine Zeit vorhanden ist.  

Bezug
                        
Bezug
Lineare Reibungskraft: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 Do 15.03.2007
Autor: leduart

Hallo
Die Reibungsarbeit ist [mm] W=\integral_{A}^{C}{F_R ds} [/mm]
jetzt musst du [mm] F_R(s) [/mm] kennen, [mm] F_R(s)=120N+k*s [/mm]
wie genau die Reibungskraft sich aendert, also k hast du nicht angegeben. auch nicht, ob sich der Reibungskoeefizient oder die Reibungskraft aendern. Wenn die masse nicht angegeben ist, hast du zu wenig Angaben, um das in zahlen zu loesen.
Also musst du uns einiges von der Aufgabe verschwiegen haben.
Da das ganze in nem KOS gegeben ist koennte sich [mm] F_r [/mm] auch prop zu x aendern, und prop. zu t waer auch moeglich, da man bei bekanntem F ja t ausrechnen kann.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]