matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische StatistikLineare Regression Hyperbel
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "mathematische Statistik" - Lineare Regression Hyperbel
Lineare Regression Hyperbel < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Regression Hyperbel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:00 Sa 01.02.2014
Autor: naturbursche

Aufgabe
Wir sollen im Fach Verkehrssystemtheorie die Frage beantworten, warum der Vertrauensbereich der linearen Regression durch eine Hyperbel dargestellt wird und wovon X abhängig ist.

Habe jetzt überlegt ob der Vertrauensbereich für die gesamte Regressionsgerade über die geschätzte Standardabweichung bestimmt wird und sich daraus eine Hyperbel ergeben könnte, finde aber bis jetzt keinen vernünftigen Ansatz.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lineare Regression Hyperbel: Antwort
Status: (Antwort) fertig Status 
Datum: 13:31 Sa 01.02.2014
Autor: luis52

Moin naturbursche,

[willkommenmr]

Schau mal []hier ab Folie 21.

Bezug
        
Bezug
Lineare Regression Hyperbel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:35 Sa 01.02.2014
Autor: naturbursche

Danke für die schnelle Antwort, wenn ich Übersicht richtig verstanden habe steigt die Unsicherheit, je weiter die Werte von der Mitte der Regressionsgeraden entfernt sind. Dadurch  entstehen dann die Hyperbeläste.

Bezug
                
Bezug
Lineare Regression Hyperbel: Antwort
Status: (Antwort) fertig Status 
Datum: 15:11 Sa 01.02.2014
Autor: luis52


> Danke für die schnelle Antwort, wenn ich Übersicht
> richtig verstanden habe steigt die Unsicherheit, je weiter
> die Werte von der Mitte der Regressionsgeraden entfernt
> sind.

Wenn du mit Mitte das arithmetische Mittel der x-Werte meinst, ja.


> Dadurch  entstehen dann die Hyperbeläste.  

[ok] Huebsches Wort. ;-)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]