matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeLineare Optimierung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Gleichungssysteme" - Lineare Optimierung
Lineare Optimierung < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Optimierung: 2 Firmen, 3 Lager, 6 Preise
Status: (Frage) überfällig Status 
Datum: 19:25 Mi 14.05.2008
Autor: RudiBe

Aufgabe
2 Fabriken (Fab's) produzieren pro Tag 1500 Autos.
Fab A = 800 Autos
Fab B = 700 Autos
Diese Autos werden auf 3 Lager mit unterschiedlichem Fassungsvermögen aufgeteilt.
Lager I = 500 Autos
Lager II = 400 Autos
Lager III = 600 Autos
Die Kosten für den Transport von den Fab's zu den Lagern sind unterschiedlich.
Fab A -> Lager I = 110€ -> Lager II = 120€ -> Lager III = 70€
Fab B -> Lager I = 100€ -> Lager II = 90€ -> Lager III = 80€
Wie müssen die Autos auf die Lager verteilt werden um die minimalsten Kosten zu erzielen?

Nun wie rechnet man sowas rechnerisch?
Für die Kostenfunktion hab ich folgende Nebenrechnungen:
Fab A -> Lager I : [mm] x\ge0 [/mm]
Fab A -> Lager II : [mm] y\ge0 [/mm]
Fab A -> Lager III : [mm] (800-x-y)\ge0 [/mm]
Fab B -> Lager I : [mm] 500-x\ge0 [/mm]
Fab B -> Lager II : [mm] 400-y\ge0 [/mm]
Fab B -> Lager III : [mm] 600-(800-x-y)\ge0 [/mm]

Die Kostenfunktion wäre dann:

Z=110x+120y+70(800-x-y)+100(500-x)+90(400-y)+80(-200+x+y)
Z=20x+40y+126000

Kann mir jemand einen Tipp geben, ob das so passt und wie ich weiter machen sollte?



PS: diese Frage wurde in keinem anderen Forum gestellt

        
Bezug
Lineare Optimierung: ich weiss es ! (ein Bißchen)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:03 Do 15.05.2008
Autor: RudiBe

ich habe inzwischen eine halbwegs brauchbare Lösung meines Problems gefunden.

man macht aus jeder Nebenrechnung eine Funktion (Gerade) und sucht dann rechnerisch ALLE möglichen Schnittpunkte (der Geraden).
Als Nächstes überprüft man, ob jedes erhaltene Wertepaar (x,y) zu den Nebenbedingungen passt.
Die Wertepaare die passen werden nacheinander in die Zielformel eingetragen und so der MIN bzw. MAX-Wert ermittelt.
Eine echte mathematische Lösung, wie ich sie mir vorgestellt hab, ist das nicht, aber immer noch besser als das Symplex-Verfahren, welches für das Beispiel statt meiner 1,5 A4-Seiten mindestens 3 braucht ;)

Bezug
        
Bezug
Lineare Optimierung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:35 Sa 17.05.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]