matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNumerik linearer GleichungssystemeLineare Optim. - Normalform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Numerik linearer Gleichungssysteme" - Lineare Optim. - Normalform
Lineare Optim. - Normalform < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Optim. - Normalform: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:56 So 12.12.2010
Autor: petra8899

Aufgabe
Transformieren sie folgendes Problem in die Normalform:

Minimiere f(x) = [mm] x_{1} [/mm] + [mm] x_{2} [/mm]
Nebenbedingungen:
-10 [mm] \le x_{1} \le [/mm] 10
-5 [mm] \le x_{2} \le [/mm] 3
-1 [mm] \le 2x_{1}-x_{2} \le [/mm] 1

Hi,

ich habe leider bei obiger Aufgabe Probleme.

Laut meiner Definition lautet ein lineares Optimierungsproblem in Normalform wie folgt:
Bestimme x [mm] \in \IR^n [/mm] mit z = f(x) = [mm] c^{T} [/mm] minimal unter den Nebenbedingungen Ax = b (A [mm] \in \IR^{(m,n)}, [/mm] m < n), x [mm] \ge [/mm] 0.

Ich weiß, dass ich zur Herstellung der Normalform sogenannte Schlupfvariablen einführen muss. Doch wie funktioniert das genau und wie viele muss ich einführen?

Vielen lieben Dank für Eure Hilfe!

Gruß
Petra

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lineare Optim. - Normalform: Tipp
Status: (Antwort) fertig Status 
Datum: 19:47 So 12.12.2010
Autor: wieschoo

Hi,
> Transformieren sie folgendes Problem in die Normalform:
>  

>  Hi,
>  
> ich habe leider bei obiger Aufgabe Probleme.
>  
> Laut meiner Definition lautet ein lineares
> Optimierungsproblem in Normalform wie folgt:
>  Bestimme x [mm]\in \IR^n[/mm] mit z = f(x) = [mm]c^{T}[/mm] minimal unter
> den Nebenbedingungen Ax = b (A [mm]\in \IR^{(m,n)},[/mm] m < n), x
> [mm]\ge[/mm] 0.
>  
> Ich weiß, dass ich zur Herstellung der Normalform
> sogenannte Schlupfvariablen einführen muss. Doch wie
> funktioniert das genau und wie viele muss ich einführen?

In der Normalform hast du ein Gleichungssystem und kein Ungleichungssystem, als müssen da Lücken aufgefüllt werden, damit Gleichheit herrscht.

> Minimiere f(x) = [mm]x_{1}[/mm] + [mm]x_{2}[/mm]

Das ist schon einmal gut

> Nebenbedingungen:
> -10 [mm]\le x_{1} \le[/mm] 10

Naja es muss
[mm]x_1\leq 10[/mm] und [mm]-10 \leq x_1[/mm] gelten. Dann führt man eine Schlupfvariable [mm]x_3[/mm] ein
und hat statt [mm]x_1\leq 10[/mm] nun [mm]x_1 + x_3 = 10[/mm].

Bei [mm]-10 \leq x_1[/mm] kann man mit -1 durchmultiplizieren:
[mm] -x_1 \leq 10[/mm] Also [mm] -x_1 +x_4 = 10[/mm]

> -5 [mm]\le x_{2} \le[/mm] 3
> -1 [mm]\le 2x_{1}-x_{2} \le[/mm] 1

analog.

>  
> Vielen lieben Dank für Eure Hilfe!
>  
> Gruß
>  Petra
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Lineare Optim. - Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:40 So 12.12.2010
Autor: petra8899

Danke für die Hilfe.

Dann ergeben sich bei mir folgende Gleichungen:

[mm] x_1+x_3=10 [/mm]
[mm] -x_1+x_4=10 [/mm]

[mm] x_2+x_5=3 [/mm]
[mm] -x_2+x_6=5 [/mm]

[mm] 2x_1-x_2+x_7=1 [/mm]
[mm] -2x_1+x_2+x_8=1 [/mm]

Man erhält folgende Matrizen A und B:
A = [mm] \pmat{ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 2 & -1 & 0 & 0 & 0 & 0 & 1 & 0 \\ -2 & 1 & 0 & 0 & 0 & 0 & 0 & 1}; [/mm] B = [mm] \vektor{10 \\ 10 \\ 3 \\ 5 \\ 1 \\ 1} [/mm]

Stimmt das so (die Gefahr von Rechenfehlern sehe ich leider als recht hoch an ;-))? Vielen Dank für euer mathematisches Know-how!

Bezug
                        
Bezug
Lineare Optim. - Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 16:01 Mo 13.12.2010
Autor: MathePower

Hallo petra8899,

> Danke für die Hilfe.
>  
> Dann ergeben sich bei mir folgende Gleichungen:
>  
> [mm]x_1+x_3=10[/mm]
>  [mm]-x_1+x_4=10[/mm]
>  
> [mm]x_2+x_5=3[/mm]
>  [mm]-x_2+x_6=5[/mm]
>  
> [mm]2x_1-x_2+x_7=1[/mm]
>  [mm]-2x_1+x_2+x_8=1[/mm]
>  
> Man erhält folgende Matrizen A und B:
>  A = [mm]\pmat{ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 2 & -1 & 0 & 0 & 0 & 0 & 1 & 0 \\ -2 & 1 & 0 & 0 & 0 & 0 & 0 & 1};[/mm]
> B = [mm]\vektor{10 \\ 10 \\ 3 \\ 5 \\ 1 \\ 1}[/mm]
>  
> Stimmt das so (die Gefahr von Rechenfehlern sehe ich leider
> als recht hoch an ;-))? Vielen Dank für euer
> mathematisches Know-how!


Ja, das stimmt so. [ok]


Gruss
MathePower

Bezug
                                
Bezug
Lineare Optim. - Normalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:03 Mo 13.12.2010
Autor: petra8899

Vielen herzlichen Dank an

wieschoo

und

MathePower!

Liebe Grüße
Petra

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]