matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenLineare Operatoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Abbildungen" - Lineare Operatoren
Lineare Operatoren < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Operatoren: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 20:01 Mi 17.12.2008
Autor: uniklu

Aufgabe
[mm] T:K^3 [/mm] -> [mm] K^3 [/mm] mit T(x,y,z) = (2y + z, x - 4y, 3x).
B = [mm] (\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3}) [/mm] und Bx = ((1,1,1),(1,1,0),(1,0,0)) seien Basen von [mm] K^3 [/mm]
a) Berechne die Übergangsmatrix P von B -> Bx und die Übergangsmatrix Q von Bx auf B. Zeige Q < [mm] P^{-1} [/mm]
b) Zeige, dass [mm] [v]_{Bx} [/mm] = [mm] P^{-1}[v]_B [/mm] für jeden Vektor [mm] \overrightarrow{v} \in K^3 [/mm] gilt.
c) Berechne die Matrixdarstellgung [mm] [T]_B [/mm] und [mm] [T]_{Bx} [/mm] von T bezüglich B und bezüglich Bx.
d) Verifiziere: [mm] [T]_{Bx} [/mm] = [mm] P^{-1} [T]_B [/mm] P
e) Verifiziere: [mm] [T(\overrightarrow{v})]_{Bx} [/mm] = [mm] [T]_{Bx} [/mm] und [mm] [T(\overrightarrow{v})]_B [/mm] = [mm] [T]_B [\overrightarrow{v}]_(B) [/mm] (Setze v = (a,b,c) an).
f) Berechne T(1,2,3) auf 3 Arten.

Hallo!

Ich habe die Aufgabe gesehen und habe wirklich absolut keinen Plan was ich hier machen soll. Aus dem Vorlesungsskript werde ich auch nicht wirklich schlau - ich stehe wirklich komplett daneben.
Bitte um Hilfe

        
Bezug
Lineare Operatoren: Antwort
Status: (Antwort) fertig Status 
Datum: 06:31 Do 18.12.2008
Autor: angela.h.b.


> [mm]T:K^3[/mm] -> [mm]K^3[/mm] mit T(x,y,z) = (2y + z, x - 4y, 3x).
>  B =
> [mm](\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})[/mm]
> und C= ((1,1,1),(1,1,0),(1,0,0)) seien Basen von [mm]K^3[/mm]

>  a) Berechne die Übergangsmatrix P von B -> C und die  Übergangsmatrix Q von C auf B. Zeige Q < [mm]P^{-1}[/mm]

Hallo,

als erstes mal habe ich in Deinen Text eingegriffen und die Basis, die bei Euch aus unerfindlichen Grunden Bx heißt, was dazu angetan ist, Verwirrung zu stiften, in C umgetauft.
Das nur zur Information, falls Du sie vermißt. (Schreibt Ihr die Vektoren eigentlich wirklich als Zeilen? Vorteilhaft und übersichtlich ist das nicht.)

Du sollst in dieser Aufgabe a) die Matrix P aufstellen, die Dir Vektoren, die in Koordinaten bzgl. B gegeben sind, in solche bzgl. C umwandelt,

und die Matrix Q, welche genau das umgekehrte tut.

(Die Matrix P nenne ich gerne  [mm] _CT_B, [/mm] weil sie mit Vektoren in Koordinaten bzgl B von links gefüttert wird wie ein Goldesel, und hinten kommt kein Gold raus, sondern Vektoren in Koordinaten bzgl C. Ich finde diese Schreibweise bei größeren transformationsaufgaben hilfreich, weil sie "spricht".)

So, nun überlegen wir mal, was die zur Matrix P= [mm] _CT_B [/mm] gehörige Abbildung [mm] f_p [/mm] leisten soll:

[mm] \vec{e_1} [/mm] soll abgebildet werden auf seine Koordinaten bzgl C,

also ist zu ermitteln

[mm] \vec{e_1}=a_1*(1,1,1)+b_1(1,1,0)+c_1(1,0,0)=\vektor{a_1\\b_1\\c_1}_{(C)}. [/mm]

Dies wäre die erste Spalte der Matrix P= [mm] _CT_B, [/mm] denn in den Spalten stehen ja die Bilder der Basisvektoren.

Die anderen Spalten entsprechend,

und ebenfalls entsprechent geht dann [mm] Q=_BT_C. [/mm]

Was

> Zeige Q < [mm]P^{-1}[/mm]

bedeuten soll, ist mir schleierhaft,

aber Q [mm] =P^{-1} [/mm] kann man zeigen durch Muliplikation - und wenn man drüber nachdenkt, was man getan hat, wundert man sich noch nicht mal, daß die Einheitsmatrix rauskommt.


>  b) Zeige, dass [mm][v]_{C}[/mm] = [mm]P^{-1}[v]_B[/mm] für jeden Vektor [mm]\overrightarrow{v} \in K^3[/mm] gilt.

Hier sollst Du zeigen, daß, wenn Du einen beliebigen Vektor in Koodinaten bzgl B   (das bedeutet [mm] [v]_B) [/mm]  mit der Matrix [mm] P^{-1} [/mm] multiplizierst, der Koordinatenvektor dieses Vektors bzgl C herauskommt  (das bedeutet [mm] [v]_C). [/mm]


>  c1) Berechne die Matrixdarstellgung [mm][T]_B[/mm]

Da B die Standardbasis ist, brauchst Du nur "ganz normal" die darstellende Matrix von T aufzustellen.

Und wenn dann bis hierher alles steht, kann man mit den restlichen Aufgaben weitermachen.
Nun rechne mal schön!

Gruß v. Angela

P.S.: Machst Du Grundschullehramt? Weil: es ist irritierend, wenn da Hauptstudium steht, und man Erstsemesterstoff erklärt.


> c2) [mm][T]_{C}[/mm] von T bezüglich B und bezüglich C.

>  d) Verifiziere: [mm][T]_{C}[/mm] = [mm]P^{-1} [T]_B[/mm] P

>  e) Verifiziere: [mm][T(\overrightarrow{v})]_{C}[/mm] = [mm][T]_{C}[/mm] und [mm][T(\overrightarrow{v})]_B[/mm] = [mm][T]_B [\overrightarrow{v}]_(B)[/mm]
> (Setze v = (a,b,c) an).

>  f) Berechne T(1,2,3) auf 3 Arten.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]