matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeLineare Hülle, Basis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Moduln und Vektorräume" - Lineare Hülle, Basis
Lineare Hülle, Basis < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Hülle, Basis: Erklärung
Status: (Frage) beantwortet Status 
Datum: 23:35 Do 22.11.2007
Autor: Syladriel

Aufgabe
Es seien [mm]U_1 = <\{x_1, x_2, x_3\}>[/mm] und [mm]U_2 = <\{y_1, y_2, y_3\}>[/mm], wobei

[mm] x_1 = \vektor{1 \\ 1 \\ 2 \\ 1}, x_2 = \vektor{ 0 \\ -2 \\ 1 \\ 0}, x_3 = \vektor{ 1 \\ -1 \\ 3 \\ 1 }[/mm]

[mm] y_1 = \vektor{3 \\ 1 \\ 7 \\ 3}, y_2 = \vektor{ -3 \\ 2 \\ -5 \\ -1}, y_3 = \vektor{ 0 \\ 3 \\ 2 \\ 2 }[/mm]


Bestimmen Sie die Dimension und eine Basis von [mm] U_1, U_2, U_1 [/mm] + [mm] U_2 [/mm] und [mm] U_1 \cap U_2[/mm].

Also, ich weiß, dass die lineare Hülle eine Menge von Linearkombinationen ist. Ganz habe ich die Definition nicht verstanden und hätte gerne ein Beispiel. Wenn jemand es beispielsweise an [mm] U_1 [/mm] mir zeigt, oder sich ein paar Vektoren aus den Fingern saugt, wäre ich dankbar. Ich würde es gerne nachvollziehen.

Basis und Dimension dürfte nicht so dass Problem sein, wenn ich das richtig verstanden habe.


Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Lineare Hülle, Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 07:53 Fr 23.11.2007
Autor: angela.h.b.


> Es seien [mm]U_1 = <\{x_1, x_2, x_3\}>[/mm] und [mm]U_2 = <\{y_1, y_2, y_3\}>[/mm],
> wobei
>  
> [mm]x_1 = \vektor{1 \\ 1 \\ 2 \\ 1}, x_2 = \vektor{ 0 \\ -2 \\ 1 \\ 0}, x_3 = \vektor{ 1 \\ -1 \\ 3 \\ 1 }[/mm]
> [mm]y_1 = \vektor{3 \\ 1 \\ 7 \\ 3}, y_2 = \vektor{ -3 \\ 2 \\ -5 \\ -1}, y_3 = \vektor{ 0 \\ 3 \\ 2 \\ 2 }[/mm]
>
> Bestimmen Sie die Dimension und eine Basis von [mm]U_1, U_2, U_1[/mm]
> + [mm]U_2[/mm] und [mm]U_1 \cap U_2[/mm].

Hallo,

in der linearen Hülle von [mm] \{x_1, x_2, x_3\} [/mm] sind gerade sämtliche Linearkombinationen dieser drei Vektoren, also Vektoren der Gestalt [mm] x=\lambda_1x_1+\lambda_2x_2+\lambda_3x_3. [/mm]

Die Vektoren [mm] x_1, x_2, x_3 [/mm] sind also ein Erzeugendensystem der linearen Hülle.

Eine Basis des Raumes U findest Du z.B., indem Du aus diesen drei Vektoren eine maximale linear unabhängige Teilmenge herausfilterst.

Offensichtlich sind ja [mm] x_1 [/mm] und [mm] x_2 [/mm] linear unabhängig, und Du mußt nun nur noch gucken, ob auch [mm] \{x_1, x_2, x_3\} [/mm] linear unabhängig ist. Wenn ja, ist das Deine Basis, wenn nein, ist [mm] \{x_1, x_2\} [/mm] die Basis der linearen Hülle.

Es gibt noch einen Weg, das ganz schematisch zu berechnen: man legt die Vektoren als Zeilen in eine Matrix, bringt diese auf Zeilenstufenform, und die Zeilen, die nichtleer sind, ergeben dann wiederaufgerichtet eine Basis des Raumes, der v. den Ursprungsvektoren erzeugt wird.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]