matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeLineare Gleichungssystem (3)
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Gleichungssysteme" - Lineare Gleichungssystem (3)
Lineare Gleichungssystem (3) < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Gleichungssystem (3): Hilfe zur Umsetzung
Status: (Frage) beantwortet Status 
Datum: 01:13 Do 08.12.2011
Autor: Assyrianos

Aufgabe 1
Aus "Elemente der Mathematik 11" vom Schroedel Verlag. S. 43 Nr.4 a)

Bestimme die Lösungsmenge:

a)
3x   -2x  +5z = 13
-x  +3y  +4z  = -1
5x  +6y  -z   = 3

Lösung:

a) x=2;y=-1;z=1

Aufgabe 2
alternativ b)
6x  +4y -z  = 0
-7x -8y -3z = 5
4x  -2y +z  = 22

Lösung:

b) x=3:y=-4;z=2

Hallo liebes Forum, hier zu meiner ersten Frage hier:

Wie kann ich dieses Gleichungssystem mit dem Additions/Subtraktionsverfahren lösen, und wieso sind andere Lösungswege sinnvoll/nicht sinnvoll?

Sitze schon seit 3h an diesen Aufgaben, habe alles mögliche versucht, komme aber zu keinen richtigen Ergebnissen. Die Lösungen habe ich bekommen, die brauche ich nicht. Meine Frage ist wie? Und ganz besonders wieso DIESES Verfahren?

Ich habe mehrere vollgeschriebene Blätter hier liegen, wenn jemand möchte werde ich diese gerne mal einscannen und dann auf Imageshack hochladen, damit ihr euch ein Bild von meiner "Angehensweise" machen könnt, jedoch denke ich wird dies nicht nötig sein.

Versucht habe ich mich im Internet schlau zu machen und bin zu z.B: diesem Video gekommen:
[]http://www.youtube.com/watch?v=1bUHj7NTJ_0

Die Aufgabe dort konnte ich komischerweise mitlösen, aber alleine im Buch? Keine Chance, evtl. liegt es daran das ich schon müde bin und so viel Kaffee mir nicht gut tut :D

Jedoch ein wenig Hilfe mit einer guten Erklärung wäre nett, die Klausur steht am Dienstag an und ich möchte dafür gut gewappnet sein.

Danke
Stevens T.

P.S. Eine Live-Erklärung via Telefon/Skype/Teamspeak etc. ist immer möglich, freue mich auch über PMs.





Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lineare Gleichungssystem (3): Antwort
Status: (Antwort) fertig Status 
Datum: 01:40 Do 08.12.2011
Autor: sandp

a)
3x   -2x  +5z = 13      <---- hier ist ein Fehler, -2x müsste -2y heißen
-x  +3y  +4z  = -1
5x  +6y  -z    = 3

also es gibt sehr viele Möglichkeiten hier vorzugehen, ich gehe mal nach der Methode wie im Video vor

1.  3x   -2y  +5z = 13    
2.  -x  +3y  +4z  = -1    | *3
3.  5x  +6y   -z   = 3
-----------------------------
1.  3x   -2y  +5z     = 13     |jetzt können wir die 1. und die 2. Gleichung
2. -3x  +9y  +12z  = -3   | addieren
3.  5x  +6y   -z      = 3
-----------------------------
1.+2.          7y  +17z = 10
2.        -x  +3y  +4z   = -1     | *5
3.        5x  +6y   -z    = 3
-----------------------------
1.+2.          7y  +17z     = 10
2.       -5x  +15y  +20z  = -5     |jetzt können wir die 2. und die 3. Gleichung
3.        5x  +6y   -z         = 3      | addieren
-------------------------------
1.+2.          7y  +17z     = 10
2.+3.        21y  +19z     = -2

jetzt nehmen wir zum Beispiel die Gleichen 2.+3. und formen sie nach y um, du könntest auch die Gleichung 1.+2. nehmen oder nach z umformen, das ist macht keinen unterschied
2.+3.        21y  +19z     = -2
             => y = [mm] \bruch{-2 - 19z}{21} [/mm] dann setzt du dieses y in die Gleichung 1.+2. ein

[mm] 7*(\bruch{-2 - 19z}{21}) [/mm] + 17z = 10
      => z = 1 jetzt kannst du z in Gleichung 1.+2. einsetzen
21y + 19 = -2
    => y = -1
und jetzt noch z und y in einer der oberen Gleichungen einsetzen und x ausrechnen
1. 3x -2 *(-1) + 5 = 13
=> x = 2

das ganze geht immer nach dem gleichen Prinzip, probier es einfach mal selbst an der b

Bezug
                
Bezug
Lineare Gleichungssystem (3): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:09 Mo 12.12.2011
Autor: Assyrianos

Danke, habs jetzt Verstanden :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]