matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesLineare Algebra II
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Lineare Algebra II
Lineare Algebra II < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Algebra II: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:47 Mi 15.04.2009
Autor: mb588

Aufgabe
Man zerlege das Polynom [mm] x^4+4 [/mm] in ein Produkt über [mm] \IQ [/mm] nicht weiter faktorisierbarer Polynome.

Hey.
Die Aufgabe hört sich ja recht einfach an. ;)
Aber ich finde einfach keinen Ansatz und erst recht nicht die Lösung. Hätte die Funktion Nullstellen wäre das alles kein Problem, aber hat sie ja nicht. Meine Frage:
Gibt es eine andere Möglichkeit?

        
Bezug
Lineare Algebra II: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Mi 15.04.2009
Autor: abakus


> Man zerlege das Polynom [mm]x^4+4[/mm] in ein Produkt über [mm]\IQ[/mm] nicht
> weiter faktorisierbarer Polynome.
>  Hey.
>  Die Aufgabe hört sich ja recht einfach an. ;)
>  Aber ich finde einfach keinen Ansatz und erst recht nicht
> die Lösung. Hätte die Funktion Nullstellen wäre das alles
> kein Problem, aber hat sie ja nicht. Meine Frage:
>  Gibt es eine andere Möglichkeit?

Wenn es ohne Nullstellen dann eine Möglicheit zur Faktorisierung geben sollte, dann dürfen die Faktoren ebenfals keine Nullstellen haben. Das ist wohl nur für quadratische Polynome möglich.
Setze also [mm] x^4+4=x^4+0x^3+0x^2+0x+4=(x^2+ax+b)(x^2+cx+d) [/mm] an und mache einen Koeffizientenvergleich.
Gruß Abakus


Bezug
                
Bezug
Lineare Algebra II: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:05 Mi 15.04.2009
Autor: mb588

Ja soweit hatte ich das auch schon, aber ich dachte mir das so, dass man das noch weiter Zerlegen kann, also in Faktoren mit Grade eins! Weil ansonsten wäre das glaub ich fast zu einfach.

Bezug
                        
Bezug
Lineare Algebra II: Antwort
Status: (Antwort) fertig Status 
Datum: 18:32 Mi 15.04.2009
Autor: abakus


> Ja soweit hatte ich das auch schon, aber ich dachte mir das
> so, dass man das noch weiter Zerlegen kann, also in
> Faktoren mit Grade eins! Weil ansonsten wäre das glaub ich
> fast zu einfach.

Ein Faktor vom Grad 1 ist unmöglich, dann gäbe es ja eine Nullstelle.
Die Aufgabe war hier vor einiger Zeit schon einmal gestellt, das Ergebnis war [mm] (x^2-2x+2)(x^2+2x+2). [/mm]
Gruß Abakus



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]