matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraLineare Algebra
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Lineare Algebra
Lineare Algebra < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:21 Di 14.11.2006
Autor: YogieBear

Welche der folgenden Eigenschaften von f ist äquivalent dazu, dass f surjektiv ist?

1. Für jedes y [mm] \in [/mm] Y hat das Urbild [mm] f^{-1} [/mm] (y) genau ein Element

2. Für jedes y [mm] \in [/mm] Y gilt  [mm] f^{-1} [/mm] (y)  [mm] \not= \emptyset [/mm]

3. Für [mm] y_{1} [/mm] , [mm] y_{2} \in [/mm] Y mit [mm] y_{1} \not= y_{2} [/mm] gilt [mm] f^{-1} [/mm] ( [mm] y_{1} [/mm] ) [mm] \not= f^{-1} [/mm] ( [mm] y_{2} [/mm] )

Kann mir jemand sagen welche dieser Eigenschaften richtig ist oder sind.

        
Bezug
Lineare Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 21:33 Di 14.11.2006
Autor: Planlos

Also 3. ist es nicht.
Surjektiv heisst: [mm] \forall [/mm] y [mm] \in [/mm] Y [mm] \existsx \in [/mm] X : f(x) = y
Vielleicht kommste ja nun weiter.

Bezug
                
Bezug
Lineare Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:35 Di 14.11.2006
Autor: YogieBear

Aber die ersten beiden Eigenschaften sind korrekt oder?

Bezug
                        
Bezug
Lineare Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 21:42 Di 14.11.2006
Autor: piet.t

Hallo,

[mm] f:\IR\to\{1\}, [/mm]  x [mm] \mapsto [/mm] 1 ist sicher surjektiv, aber gilt da 1.?

Gruß

piet

Bezug
                                
Bezug
Lineare Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:46 Di 14.11.2006
Autor: YogieBear

Das zweite ist aber richtig? wenn das [mm] \not= \emptyset [/mm] ist f surjektiv stimmts? danke für die hilfe

Bezug
                                        
Bezug
Lineare Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 21:51 Di 14.11.2006
Autor: piet.t

Ja, das müsste man jetzt nur noch sauber begründen, aber dazu müsste man eure genaue Definition von "surjektiv" kennen.
Übrigens habe ich mir 3. nochmal angeschaut, und je länger ich darüber nachdenke desto mehr meine ich, dass das auch richtig ist:
Wie viele gemeinsame Elemente können denn [mm] f^{-1}(y_1) [/mm] und [mm] f^{-1}(y_2) [/mm] haben, wenn [mm] y_1\not=y_2 [/mm] ? Und wann können sie dann nur gleich sein?

edit: ...und noch genauer nachgedacht ist 3. doch wieder nicht äquivalent zu surjektiv, allerdings ist der Unterschied nur sehr klein - vielleicht findest Du es ja raus ;-)

Gruß

piet

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]