matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeLineare Abhängigkeit Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Gleichungssysteme" - Lineare Abhängigkeit Matrix
Lineare Abhängigkeit Matrix < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abhängigkeit Matrix: Allgemeine Fragestellung
Status: (Frage) beantwortet Status 
Datum: 10:07 Mo 16.01.2012
Autor: Nicole1989

Hallo Leute

Ich habe eine allgemeine Frage und zwar habe ich in meinen Unterlagen die folgenden Sätze:

Ob eine eindeutige Lösung (Lineares Gleichungssystem) existiert, hängt davon ab, ob die Zeilen- bzw. Spaltenvektoren der Koeffizientenmatrix linear unabhängig sind.

Jetzt ist meine Frage die folgende:

Muss ich, um die lineare Unabhängigkeit feststellen zu können, die Spalten sowie die Zeilenvektoren auf lineare Unabhängigkeit überprüfen oder reicht es nur bspw. die Spalten darauf zu überprüfen? Ich hätte gedacht, wenn die Spalten bzw. die Zeilenvektoren linear unabhängig sind, dann müssen es die Zeilen bzw. die Spaltenvektoren auch sein. Aber ich bin mir nicht sicher, ob diese Aussage hinhaut...

Kann mir da jemand einen Rat geben?

Besten Dank.

Liebe Grüsse Nicole

        
Bezug
Lineare Abhängigkeit Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 10:21 Mo 16.01.2012
Autor: Diophant

Hallo,

sagt dir Zeilenrang=Spaltenrang etwas und hilft dir dieser Tipp vielleicht schon, deine Frage zu beantworten?

Gruß, Diophant

Bezug
                
Bezug
Lineare Abhängigkeit Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:25 Mo 16.01.2012
Autor: Nicole1989

Hallo Diophant

Nein, der Begriff "Rang" habe ich zwar schon einmal gehört. Genauer angesehen haben wir ihn jedoch nicht. Laut der Aussage von fred97 funktioniert meine Theorie ja wohl nicht.:) Das heisst, ich werde wohl die Zeilen und Spalten jeweils überprüfen müssen. Oder kannst du mir mit deiner Ranggleichstellung noch einen Tipp geben?

Besten Dank.

Liebe Grüsse Nicole

Bezug
                        
Bezug
Lineare Abhängigkeit Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:53 Mo 16.01.2012
Autor: Diophant

Hallo Nicole,

verwende den Tipp von FRED. Das mit dem Rang war eine eher theoretische Überlegung, und von vornherein auf n x n - Gleichungssysteme beschränkt.

Gruß, Diophant

Bezug
        
Bezug
Lineare Abhängigkeit Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 10:29 Mo 16.01.2012
Autor: fred97


> Hallo Leute
>  
> Ich habe eine allgemeine Frage und zwar habe ich in meinen
> Unterlagen die folgenden Sätze:
>  
> Ob eine eindeutige Lösung (Lineares Gleichungssystem)
> existiert, hängt davon ab, ob die Zeilen- bzw.
> Spaltenvektoren der Koeffizientenmatrix linear unabhängig
> sind.
>
> Jetzt ist meine Frage die folgende:
>  
> Muss ich, um die lineare Unabhängigkeit feststellen zu
> können, die Spalten sowie die Zeilenvektoren auf lineare
> Unabhängigkeit überprüfen oder reicht es nur bspw. die
> Spalten darauf zu überprüfen? Ich hätte gedacht, wenn
> die Spalten bzw. die Zeilenvektoren linear unabhängig
> sind, dann müssen es die Zeilen bzw. die Spaltenvektoren
> auch sein. Aber ich bin mir nicht sicher, ob diese Aussage
> hinhaut...

Die haut nicht hin, falls die Matrix nicht quadratisch ist.

Beispiel:

              [mm] \pmat{ 1 & 0 & 0 \\ 0 & 1 & 0 } [/mm]

Die Zeilenvektoren sind l.u., die Spaltenvektoren nicht.



FRED

>  
> Kann mir da jemand einen Rat geben?
>  
> Besten Dank.
>  
> Liebe Grüsse Nicole


Bezug
                
Bezug
Lineare Abhängigkeit Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:26 Mo 16.01.2012
Autor: Nicole1989

Besten Dank Fred.

Bezug
                
Bezug
Lineare Abhängigkeit Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:15 Di 31.01.2012
Autor: Nicole1989

Hallo Leute

Jetzt ist mir nochmals eine Frage zu diesem Thema Unabhängigkeit der Zeilen-Spaltenvektoren in den Sinn gekommen. Ich habe mich in letzter Zeit mehr mit dem Rang und Determinanten auseinandergesetzt. Soviel ich dort erfahren habe, kann man ja über Determinanten bei quadratischen Matrizen direkt sagen, ob diese Vektoren (sowohl Spalten als auch Zeilenvektoren) linear abhängig oder linear unabhängig sind. Der Rang gibt dabei die Anzahl maximaler linear unabhängiger Spalten bzw. Zeilenvektoren an.

Jetzt meine Frage...gibt es bei (m,n)-Matrizen ebenfalls eine Möglichkeit zu sagen, ob alle Vektoren linearunabhängig bzw. linear abhängig sind oder gibt es da nur die Möglichkeit über den Rang zu sagen, dass es diese Maximalzahl von linear abhängigen/unabhängigen Vektoren gibt?

Ich hoffe ihr wisst, was ich meine. Ansonsten bitte nachfragen. Dankeschön.

Liebe Grüsse Nicole

Bezug
                        
Bezug
Lineare Abhängigkeit Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 19:30 Di 31.01.2012
Autor: leduart

Hallo
Nein so was gibts nicht . Aber auch bei Matrizen größer als 4 mal 4 sind Det. auszurechnen meist aufwendiger als Gaussverfahren. um die Anzahl der lin unabh. zu bestimmen,
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]