matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeLineare Abhängigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Moduln und Vektorräume" - Lineare Abhängigkeit
Lineare Abhängigkeit < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abhängigkeit: linear abhängig o. unabhängig
Status: (Frage) beantwortet Status 
Datum: 12:34 Fr 02.11.2012
Autor: Thomas000

Aufgabe
Sind die Elemente [mm] v_1 [/mm] ,..., [mm] v_n [/mm] des Vektorraums V linear abhängig oder linear unabhängig? Begründen Sie Ihre Antwort!

c) V= [mm] \IR^3 v_1 [/mm] = (1,-2,2), [mm] v_2 [/mm] = (-2,2,-1), [mm] v_3 [/mm] = (-3,2,0)

Also ich steh grad bisschen auf dem Schlauch...
ich hab jetzt ein gleichungssystem draus gemacht und komme auf folgendes:
*    l + 2m - 3n = 0
**  -2l + 2m + 2n = 0
*** 2l - m = 0 | +m [mm] \Rightarrow [/mm] 2l = m | einsetzen in *

[mm] \Rightarrow [/mm] l + 4l - 3n = 0 [mm] \Rightarrow [/mm] n = [mm] \bruch{5}{3} [/mm] l einsetzen in **

[mm] \Rightarrow [/mm] -2l + 4l + [mm] \bruch{10}{3}l [/mm] = 0

ich hab das Gefühl das ich hier Murks mache. Aber wenn nicht, dann wären die Vektoren ja linear abhängig, odeR?

        
Bezug
Lineare Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:58 Fr 02.11.2012
Autor: lyx

Hallo,

also die Vektoren sind linear Abhängig. Ich Persönlich würde es aber nicht damit lösen ein Gleichungssystem aufzustellen, sondern die 3 Vektoren in eine Matrix zu schreiben:

A := [mm] \pmat{ 1 & -2 & 2 \\ -2 & 2 & -1 \\ -3 & 2 & 0 } [/mm]

und dann die Determinante der Matrix A bestimmen. (Was im Fall einer 3 x 3 Matrix mit der Regel von Sarrus recht einfach geht).

Denn es gilt:

det(A) = 0 [mm] \gdw [/mm] lineare Abhängigkeit,
det(A) [mm] \not= [/mm] 0 [mm] \gdw [/mm] lineare unabhängigkeit.

gruß


Bezug
                
Bezug
Lineare Abhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:00 Fr 02.11.2012
Autor: Thomas000

Naja ok, Matrix schön und gut. Nur leider soll es erst einmal durch ein Gleichungssystem geschehen. Wäre schön, wenn du mir an dieser Stelle mit einem Gleichungssystem weiterhelfen könntest.

Bezug
                        
Bezug
Lineare Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:12 Fr 02.11.2012
Autor: Steffi21

Hallo, scharf hinsehen genügt,

[mm] \vektor{1 \\ -2 \\ 2 }+2\vektor{-2 \\ 2 \\ -1 }-\vektor{-3 \\ 2 \\ 0 }=\vektor{0 \\ 0 \\ 0 } [/mm]

a-2b-3c=0
-2a+2b+2c=0
2a-b=0

Steffi

Bezug
        
Bezug
Lineare Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:09 Fr 02.11.2012
Autor: Helbig

Hallo Thomas,

> Sind die Elemente [mm]v_1[/mm] ,..., [mm]v_n[/mm] des Vektorraums V linear
> abhängig oder linear unabhängig? Begründen Sie Ihre
> Antwort!
>  
> c) V= [mm]\IR^3 v_1[/mm] = (1,-2,2), [mm]v_2[/mm] = (-2,2,-1), [mm]v_3[/mm] =
> (-3,2,0)
>  Also ich steh grad bisschen auf dem Schlauch...
>  ich hab jetzt ein gleichungssystem draus gemacht und komme
> auf folgendes:
>  *    l + 2m - 3n = 0
>  **  -2l + 2m + 2n = 0
>  *** 2l - m = 0 | +m [mm]\Rightarrow[/mm] 2l = m | einsetzen in *

* ist falsch: Es muß [mm] $\ell [/mm] - 2m - 3n = 0$ heißen.

>  
> [mm]\Rightarrow[/mm] l + 4l - 3n = 0 [mm]\Rightarrow[/mm] n = [mm]\bruch{5}{3}[/mm] l
> einsetzen in **
>  
> [mm]\Rightarrow[/mm] -2l + 4l + [mm]\bruch{10}{3}l[/mm] = 0
>  
> ich hab das Gefühl das ich hier Murks mache. Aber wenn
> nicht, dann wären die Vektoren ja linear abhängig, odeR?

Nein. Die Vektoren sind genau dann linear abhängig, wenn ein [mm] $\ell\ne [/mm] 0$ die Gleichung löst. Dies ist hier aber nicht der Fall. Also sind die Vektoren linear unabhängig. Allerdings müsstest Du noch den Fehler korrigieren und schauen was dann herauskommt.

Gruß,
Wolfgang


Bezug
                
Bezug
Lineare Abhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:40 Fr 02.11.2012
Autor: Thomas000

Aufgabe
V = [mm] \IR^3 [/mm]
l = (1,1,0), m = (0,1,0), n = (0,1,1) v = (0,1,0)

Ok, danke dafür. Hab aber gleich noch eine Frage:

oben seht ihr eine Aufgabe. Man erkennt ja sofort, dass 4 Vektoren aus [mm] \IR^3 [/mm] immer linear abhängig sein müssen.
Wenn ich aber nen Gleichungssystem draus mache, kommt folgendes raus:

* l = 0
** l + m + n + v = =
*** v = 0

[mm] \Rightarrow [/mm] l = m = n = v = 0 ... das widerspricht doch aber der linearen abhängigkeit? Das versteh ich nicht ganz.

Bezug
                        
Bezug
Lineare Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:43 Fr 02.11.2012
Autor: fred97


> V = [mm]\IR^3[/mm]
>  l = (1,1,0), m = (0,1,0), n = (0,1,1) v = (0,1,0)
>  Ok, danke dafür. Hab aber gleich noch eine Frage:
>  
> oben seht ihr eine Aufgabe. Man erkennt ja sofort, dass 4
> Vektoren aus [mm]\IR^3[/mm] immer linear abhängig sein müssen.
>  Wenn ich aber nen Gleichungssystem draus mache, kommt
> folgendes raus:
>  
> * l = 0
>  ** l + m + n + v = =
>  *** v = 0
>  
> [mm]\Rightarrow[/mm] l = m = n = v = 0 ...


Nein, das folgt nicht ! sondern m+n=0, also n=-m.

FRED

> das widerspricht doch
> aber der linearen abhängigkeit? Das versteh ich nicht
> ganz.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]