matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenLineare Abhängigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Vektoren" - Lineare Abhängigkeit
Lineare Abhängigkeit < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abhängigkeit: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:07 Sa 17.04.2010
Autor: tj92

Ich brauche Hilfe beim Lösen folgenden Gleichungssystems, bei dem a Werte erhalten soll, damit bestimmte Vektoren linear abhängig sind.

I   2r+2s= 2t
II  -2r+-3s= at -6t
III r-ar=1

Mein Problem ist, dass ich nie weiß, wie ich beim Lösen eines LGS vorgehen soll. Gibt es irgend eine bestimmte
Vorgehensweise?

(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.)

        
Bezug
Lineare Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:02 Sa 17.04.2010
Autor: angela.h.b.


> Ich brauche Hilfe beim Lösen folgenden Gleichungssystems,
> bei dem a Werte erhalten soll, damit bestimmte Vektoren
> linear abhängig sind.
>
> I   2r+2s= 2t
>  II  -2r+-3s= at -6t
>  III r-ar=1
>  
> Mein Problem ist, dass ich nie weiß, wie ich beim Lösen
> eines LGS vorgehen soll. Gibt es irgend eine bestimmte
> Vorgehensweise?

Hallo,

es gibt mehrere "bestimmte Vorgehensweisen", und man nimmt am besten die, die man am besten kann.

Dein Gleichungssystem hat eine Besonderheit: es ist ein GS mit einem Parameter (nämlich a) dessen Lösbarkeit Du untersuchen sollst.

Zunächst einmal ist es wichtig, daß Du Dir klarmachst, daß Deine Variablen r,s,t sind.
a behandle in Deinen Rechnungen wie eine Zahl.

Zur Systematik: bei Gleichungen mit 3 Variablen kann man erst eine Gleichung nach einer Variablen auflösen.

Damit ersetzt man nun in den anderen beiden Gleichungen diese Variable. Übrig bleiben zwei Gleichungen, die nur zwei Variablen erhalten.
Nun löst man wieder nach einer auf, ersetzt in der anderen Gleichung und hält die dritte Variable in den Händen. Rückwärts Einsetzen ergibt dann die Zahlenwerte für die beiden anderen Variablen.

Probier's am besten mal an eine normalen Gleichungssystem aus.


Zur aktuellen Aufgabe:

wenn man das von mir geschilderte Verfahren verwendet, ist es hier ziemlich schlau, erstmal in der 3.Gleichung r freizustellen.

III':   [mm] r=\bruch{1}{1-a} [/mm]

    Doch STOP! Bitterböse Falle: das darf man nur tun, wenn [mm] a\not=1. [/mm]
    Den Fall a=1 untersucht man später.

Sei als [mm] a\not=1. [/mm]

Nun einsetzen:

r in I = I':  [mm] \bruch{2}{1-a} [/mm] +2s=2t <==> [mm] t-s=\bruch{1}{a-1} [/mm]

r in II=II':  [mm] -\bruch{2}{1-a}+-3s= [/mm] at -6t=(a-6)t   <==>  (6-a)t -3s= [mm] \bruch{2}{1-a} [/mm]

Nun versuche hier weiterzumachen.

[mm] \vdots [/mm]


Am Ende mußt Du noch Fall 1, a=1, untersuchen:

> I   2r+2s= 2t
>  II  -2r+-3s= 1*t -6t
>  III r-1*r=1

---

Bei Linearer Unabhängigkeit hat das GS nur die Lösung r=s=t=0, gibt es eine hiervon vreschiedene Lösung, sind die Vektoren linear abhängig.

Gruß v. Angela

P.S.: Lineare GS kann man besonders übersichtlich mit dem Gaußalgorithmus lösen.
Falls dieser in der Schule dran war, solltest Du ihn unbedint wiederholen.





>  
> (Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]