matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenLineare Abhängigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Vektoren" - Lineare Abhängigkeit
Lineare Abhängigkeit < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abhängigkeit: Erklärung
Status: (Frage) beantwortet Status 
Datum: 19:17 Sa 07.04.2018
Autor: Mathilda1

Aufgabe
Was kann man über die lineare Abhängigkeit des Summenvektors und des Differenzenvektors zweier linear unabhängiger Vektoren aussagen?

Bei dieser Aufgabe kenne ich die Lösung:
Vektoren sind linear unabhängig
Allerdings verstehe ich nicht, warum dies so ist.

        
Bezug
Lineare Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:44 Sa 07.04.2018
Autor: angela.h.b.

Hallo,

rechnerisch sieht man es so:

wenn [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] linear unabhängig sind,
folgt aus [mm] r\vec{a}+s\vec{b}=\vec{0}, [/mm] daß r=s=0.

Sei nun
[mm] \vec{u}=\vec{a}+\vec{b}, [/mm]
[mm] \vec{v}=\vec{a}-\vec{b}, [/mm]

und sei
[mm] k\vec{u}+l\vec{v}=\vec{0}. [/mm]

Wenn hieraus nun zwingend folgt, daß k=l=0, dann sind die beiden Vektoren linear unabhängig.
Schauen wir mal nach:

[mm] k\vec{u}+l\vec{v}=\vec{0} [/mm]
<==>
[mm] (k+l)\vec{a}+(k-l)\vec{b}=\vec{0}. [/mm]

Da [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] nach Voraussetzung linear unabhängig sind, folgt k+l=0 und k-l=0,
und hieraus k=l=0.
Also sind [mm] \vec{u} [/mm] und [mm] \vec{v} [/mm] linear unabhängig.


Zeichnerisch/anschaulich:
in dem von [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] aufgespannten Parallelogramm sind der Summen- und Differensvektor die beiden Diagonalen, welche offenbar keine Vielfachen voneinander sind.

LG Angela

Bezug
                
Bezug
Lineare Abhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:47 Sa 07.04.2018
Autor: Al-Chwarizmi


> Zeichnerisch/anschaulich:

> in dem von [mm]\vec{a}[/mm] und [mm]\vec{b}[/mm] aufgespannten
> Parallelogramm sind der Summen- und Differensvektor die
> beiden Diagonalen, welche offenbar keine Vielfachen
> voneinander sind.


Damit man wirklich ein "echtes" Parallelogramm (mit positiven
Seitenlängen und positivem Flächeninhalt) erhält, ist natürlich
die Voraussetzung wichtig, dass weder [mm] $\vec{a}$ [/mm] noch [mm] $\vec{b}$ [/mm] etwa der Null-
vektor sein könnte. Aber auch dies folgt natürlich aus der
vorausgesetzten Unabhängigkeit von [mm] $\vec{a}$ [/mm] und [mm] $\vec{b}$ [/mm] .
Ich wollte dies nur zur Präzisierung erwähnen.

LG ,   Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]