matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenLineare Abbildungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Lineare Abbildungen
Lineare Abbildungen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:32 Mo 02.06.2008
Autor: angeline

Aufgabe
ich muss bestimmen jeweils, ob Li ,i=1,2, eine lineare Abbildung ist .
L1: [mm] R<_2[x]-->R^2,2 [/mm]
[mm] ax^2+bx+c-->\begin{pmatrix} a+b & ab \\ a & 0 \end{pmatrix} [/mm]

L2: [mm] R^2-->R<_3[x] [/mm]

[mm] \begin{pmatrix} a \\ b \end{pmatrix} -->(a+b)x^3+(a-b)x [/mm]

kann mir bitte jemand helfen ,ich bin ganz ahnungslos bei dieser Frage

ich muss bestimmen jeweils, ob Li ,i=1,2, eine lineare Abbildung ist .
L1: [mm] R<_2[x]-->R^2,2 [/mm]
[mm] ax^2+bx+c-->\begin{pmatrix} a+b & ab \\ a & 0 \end{pmatrix} [/mm]

L2: [mm] R^2-->R<_3[x] [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

[mm] \begin{pmatrix} a \\ b \end{pmatrix} -->(a+b)x^3+(a-b)x [/mm]

kann mir bitte jemand helfen ,ich bin ganz ahnungslos bei dieser Frage

        
Bezug
Lineare Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 Mo 02.06.2008
Autor: Somebody


> ich muss bestimmen jeweils, ob Li ,i=1,2, eine lineare
> Abbildung ist .
>  L1: [mm]R<_2[x]-->R^2,2[/mm]
>  [mm]ax^2+bx+c-->\begin{pmatrix} a+b & ab \\ a & 0 \end{pmatrix}[/mm]
>
> L2: [mm]R^2-->R<_3[x][/mm]
>  
> [mm]\begin{pmatrix} a \\ b \end{pmatrix} -->(a+b)x^3+(a-b)x[/mm]
>  
> kann mir bitte jemand helfen ,ich bin ganz ahnungslos bei
> dieser Frage
>  ich muss bestimmen jeweils, ob Li ,i=1,2, eine lineare
> Abbildung ist .
>  L1: [mm]R<_2[x]-->R^2,2[/mm]
>  [mm]ax^2+bx+c-->\begin{pmatrix} a+b & ab \\ a & 0 \end{pmatrix}[/mm]
>
> L2: [mm]R^2-->R<_3[x][/mm]
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> [mm]\begin{pmatrix} a \\ b \end{pmatrix} -->(a+b)x^3+(a-b)x[/mm]
>  
> kann mir bitte jemand helfen ,ich bin ganz ahnungslos bei
> dieser Frage

Du musst nur prüfen, ob die beiden Abbildungen linear sind, d.h. ob sie die entsprechenden Eigenschaften besitzen.
  [mm] $L_1$ [/mm] ist nicht linear: Betrachte dazu etwa das Bild eines skalaren Vielfachen eines konkreten Urbildvektors unter dieser Abbildung: im Bild, einer [mm] $2\times [/mm] 2$ Matrix, werden zwar zwei Einträge wunschgemäss mit diesem Skalar multipliziert, einer ist 0 und ein weiterer wird mit dem Quadrat des Skalars multipliziert. Letzteres widerspricht der Linearität von [mm] $L_1$. [/mm]

[mm] $L_2$ [/mm] scheint mir schon eher linear zu sein. Prüfe aber einfach die beiden Eigenschaften, mit deren Hilfe Linearität von Abbildungen definiert wurde: Du musst also prüfen, ob sich das Multiplizieren mit einem Skalar bzw. Vektorenaddition und die Anwendung von [mm] $L_2$ [/mm] vertauschen lassen.

Bezug
        
Bezug
Lineare Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:25 Di 03.06.2008
Autor: angeline

Aufgabe
Ich muss bestimmen ob Li=i=1,2, eien Lineare Abbildung ist
L1: [mm] R<_[x]-->R^2,2 ;ax^2+bx+c--> [/mm]

[mm] L2:R^2-->R<_3[x] [/mm] ; --> [mm] (a+b)x^3+(a-b)x [/mm]

bei L1
-->0+0+c
L(0*
L
c ungleich 0 deshalb nicht linear
ist das richtig?soll ich beim zweiten auch so vorgehen?  

Ich muss bestimmen ob Li=i=1,2, eien Lineare Abbildung ist
L1: [mm] R<_[x]-->R^2,2 ;ax^2+bx+c--> [/mm]

[mm] L2:R^2-->R<_3[x] [/mm] ; --> [mm] (a+b)x^3+(a-b)x [/mm]

bei L1
-->0+0+c
L(0*
L
c ungleich 0 deshalb nicht linear
ist das richtig?soll ich beim zweiten auch so vorgehen?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Bezug
                
Bezug
Lineare Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 Di 03.06.2008
Autor: Kroni

Hi,

es tut mir leid, aber ich kann deine Aufgaben sehr schlecht lesen. Könntest du die Zeichen evtl. besser formatieren und unseren Formeleditor nutzen? Einen Link dazu gibt es hier.

Du musst die Axiome der Linearität nachweisen.

F(a*x)=a*F(x)

F(a+b)=F(a)+F(b)

Wenn du beim ersten für a=0 einsteze, dann erhälst du in der Tat f(0)=c, aber die Abbildung wäre doch auch dann linear, wenn c=0. Sonst nicht, denn sonst wäre [mm] F(0*x)\not=0*F(x)=0. [/mm]

Noch eine Frage: Warum sollte das Polynom eine Abb. vom [mm] $\IR$ [/mm] in den [mm] $\IR^2$ [/mm] sein?!

LG

Kroni

Bezug
                
Bezug
Lineare Abbildungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:12 Di 03.06.2008
Autor: angela.h.b.

Hallo,

ich möchte Dich bitten, von Doppelpostings abzusehen.

Es hatte Dir doch Somebodyschon gesagt, was zu tun ist, und ich vermisse Deinen Versuch (!), die Linearität für [mm] L_2 [/mm] nachzuweisen.
Was versprichst Du Dir davon, die Frage einfach ein zweites Mal zu stellen?

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]