matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenLineare Abbildungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Abbildungen" - Lineare Abbildungen
Lineare Abbildungen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:10 So 09.03.2008
Autor: marteen

Aufgabe
1 ) Man gebe eine lineare Abbildung an f: [mm] \IR^{3} \to \IR^{4}, [/mm] sodass

Bild (f) = < [mm] \vektor{1 \\ 2 \\ 0 \\ -4} [/mm] , [mm] \vektor{2 \\ 0 \\ -1 \\ -3} [/mm] >

2) Sei g: [mm] \IR^{3} \to \IR^{4} [/mm] mit [mm] f(x_{1}, x_{2}, x_{3}) [/mm] = [mm] (x_{1}-x_{2}+2x_{3} [/mm]  ,  [mm] 2x_{1}-2x_{3} [/mm]  ,  [mm] -x_{1}-x_{2}+4x_{3} [/mm]  , [mm] 3x_{1}-x_{2}) [/mm]

Bestimme Basen von Kern und Bild.

Hallo zusammen,

1) ich scheitere kläglich an dieser Aufgabe, da mir einfach die zündende Idee fehlt. Verstehe ich die Aufgabe richtig, dass ich eine Lineare Abbildung finden soll, sodass das Bild der Spann der beiden Vektoren ist? Ich habe aber nicht den leisesten Schimmer, wie ich das machen soll.

Wäre sehr dankbar für einen Tipp.

2) Zum Kern: Ich habe ein LGS aufgestellt und jede Zeile = 0 gesetzt, also [mm] x_{1} [/mm] - [mm] x_{2} [/mm] + [mm] 2x_{3} [/mm] = 0 etc. Ich habe herausbekommen, dass [mm] \vektor{1 \\ 3 \\ 1} [/mm] eine Basis für den Kern ist.  Ist das soweit korrekt?

Zum Bild: Auch hier habe ich keine Ahnung, ich habe etwas versucht aber nur einen Vektor gefunden - das kann ja aber nicht richtig sein, da nach meiner Basis für den Kern die Dimension für das Bild 2 sein müsste. Wo liegt mein Fehler? Auch hier wäre ich für Tipps dankbar.

Grüße

Grüße

        
Bezug
Lineare Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 So 09.03.2008
Autor: angela.h.b.


> 1 ) Man gebe eine lineare Abbildung an f: [mm]\IR^{3} \to \IR^{4},[/mm]
> sodass
>
> Bild (f) = < [mm]\vektor{1 \\ 2 \\ 0 \\ -4}[/mm] , [mm]\vektor{2 \\ 0 \\ -1 \\ -3}[/mm]
> >
>  
> 2) Sei g: [mm]\IR^{3} \to \IR^{4}[/mm] mit [mm]f(x_{1}, x_{2}, x_{3})[/mm] =
> [mm](x_{1}-x_{2}+2x_{3}[/mm]  ,  [mm]2x_{1}-2x_{3}[/mm]  ,  
> [mm]-x_{1}-x_{2}+4x_{3}[/mm]  , [mm]3x_{1}-x_{2})[/mm]
>  
> Bestimme Basen von Kern und Bild.
>  Hallo zusammen,
>  
> 1) ich scheitere kläglich an dieser Aufgabe, da mir einfach
> die zündende Idee fehlt. Verstehe ich die Aufgabe richtig,
> dass ich eine Lineare Abbildung finden soll, sodass das
> Bild der Spann der beiden Vektoren ist? Ich habe aber nicht
> den leisesten Schimmer, wie ich das machen soll.

Hallo,

erinnere Dich daran, daß eine lineare Abbldung eindeutig durch die Angabe der Werte auf einer Basis bestimmt ist.

Wenn Du jetzt mit der lin. Abb. f z.B. den ersten Standardbasisvektor auf [mm] \vektor{1 \\ 2 \\ 0 \\ -4} [/mm] abbildest, den zweiten auf [mm] \vektor{2 \\ 0 \\ -1 \\ -3} [/mm] und den dritten auf die Null, so hast Du die Aufgabe erfüllt.


> 2) Zum Kern: Ich habe ein LGS aufgestellt und jede Zeile =
> 0 gesetzt, also [mm]x_{1}[/mm] - [mm]x_{2}[/mm] + [mm]2x_{3}[/mm] = 0 etc. Ich habe
> herausbekommen, dass [mm]\vektor{1 \\ 3 \\ 1}[/mm] eine Basis für
> den Kern ist.  Ist das soweit korrekt?

Ja.

> Zum Bild:

Das kannst Du so machen:

stell die darstellende Matrix der Abbildung auf. Die Spalten spannen das Bild der Abbildung auf.
Nun mußt Du eine Basis dieses aufgespannten Raumes finden mit irgendeiner der Methoden, die Du kennengelernt hast zum Auffinden eienr Basis.

Gruß v. Angela

Bezug
                
Bezug
Lineare Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:36 So 09.03.2008
Autor: marteen

Hallo angela,

vielen Dank für Deine Antwort.

Ich habe soweit alles verstanden, habe aber noch ein Problem mit der darstellenden Matrix. Ich habe jetzt etwas nachgedacht und habe irgendwo einen Knoten im Kopf - so ist das eben, wenn man die Semesterferien nicht zum Lernen nutzt.

Ist es richtig, dass die Matrix eine 4x4 Matrix ist? Ich hatte im Kopf, dass n=dimV und m=dimW, also in diesem Fall 3x4 wäre. Oder vertausche ich gerade etwas?

Meine Matrix würde so aussehen:

M = [mm] \pmat{ 1 & 2 & -1 & 3 \\ -1 & 0 & -1 & -1 \\ 2 & -2 & 4 & 0 \\ 0 & 0 & 0 & 0} [/mm]

Bezug
                        
Bezug
Lineare Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:19 So 09.03.2008
Autor: angela.h.b.

>>> 2) Sei g: $ [mm] \IR^{3} \to \IR^{4} [/mm] $ mit $ [mm] f(x_{1}, x_{2}, x_{3}) [/mm] $ = $ [mm] (x_{1}-x_{2}+2x_{3} [/mm] $  ,  $ [mm] 2x_{1}-2x_{3} [/mm] $  ,  $ [mm] -x_{1}-x_{2}+4x_{3} [/mm] $  , $ [mm] 3x_{1}-x_{2}) [/mm] $

Hallo,

Du bildest ja vom [mm] \IR^3 [/mm] in den [mm] \IR^4 [/mm] ab.

Das bedeutet, daß die darstellende Matrix eine 4x3-Matrix ist.

In der ersten Spalte steht das Bild des ersten Standardbasisvekors, in der zweiten das des zweiten und in der dritten das des dritten.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]