matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraLineare Abbildungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Lineare Abbildungen
Lineare Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:24 So 04.06.2006
Autor: melek

Aufgabe
a) Sei V ein Vektorraum,  [mm] \partial [/mm] : V  [mm] \to [/mm] V linear und v  [mm] \in [/mm] V, so dass gilt:
[mm] \partial^{n}(v)=0 [/mm] und  [mm] \partial^{n-1}(v) \not=0 [/mm] für ein n [mm] \ge [/mm] 1. Dann sind v, [mm] \partial [/mm] (v),...,  [mm] \partial^{n-1} [/mm] (v) linear unabhängig.
b) geben Sie eine lineare Abbildung  [mm] \partial: K^{n} \to K^{n} [/mm] an, so dass
[mm] \partial^{n}=0 [/mm] und [mm] \partial^{n-1} \not=0 [/mm] ist.

Guten Abend,
ich frage mich gerade, was die Frage eigentlich zu bedeuten haben soll? komme mit der Aufgabenstellung gar nicht klar...

wenn jemand versteht, was man hier machen soll, kann er mir das erklären und vielleicht sogar ansatzweise aufschreiben, was zu machen ist?danke

        
Bezug
Lineare Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:19 Mo 05.06.2006
Autor: felixf

Hallo melek!

> a) Sei V ein Vektorraum,  [mm]\partial[/mm] : V  [mm]\to[/mm] V linear und v  
> [mm]\in[/mm] V, so dass gilt:
> [mm]\partial^{n}(v)=0[/mm] und  [mm]\partial^{n-1}(v) \not=0[/mm] für ein n
> [mm]\ge[/mm] 1. Dann sind v, [mm]\partial[/mm] (v),...,  [mm]\partial^{n-1}[/mm] (v)
> linear unabhängig.

Hier hast du $V$, $v [mm] \in [/mm] V$, [mm] $\partial [/mm] : V [mm] \to [/mm] V$ und $n [mm] \in \IN$ [/mm] mit den angegebenen Eigenschaften gegeben, also es gilt [mm] $\partial^{n-1}(v) \neq [/mm] 0$ und [mm] $\partial^n(v) [/mm] = 0$.

Ist dir klar, was [mm] $\partial^n(v)$ [/mm] bedeutet? Das ist [mm] $\partial(\partial(\cdots \partial(v) \cdots [/mm] ))$, wobei du [mm] $\partial$ [/mm] da $n$-mal stehen hast. Also gilt insbesondere [mm] $\partial(\partial^{n-1}(v)) [/mm] = [mm] \partial^n(v)$. [/mm]

Du sollst jetzt zeigen, dass $v, [mm] \partial(v), \dots, \partial^{n-1}(v)$ [/mm] linear unabhaengig sind. Also nimmst du dir Koeffizienten [mm] $\lambda_0, \dots, \lambda_{n-1} \in [/mm] K$ mit [mm] $\sum_{k=0}^{n-1} \lambda_k \partial^k(v) [/mm] = 0$ (mit der Konvention [mm] $\partial^0(v) [/mm] = v$). Du musst zeigen, dass [mm] $\lambda_0 [/mm] = [mm] \dots [/mm] = [mm] \lambda_{n-1} [/mm] = 0$ ist.

Wende doch mal [mm] $\partial^{n-1}$ [/mm] auf die Gleichung an. Also berechne [mm] $\partial^{n-1}(v [/mm] + [mm] \partial(v) [/mm] + [mm] \dots [/mm] + [mm] \partial^{n-1}(v))$. [/mm] Was kommt heraus? Und dann versuchs mit [mm] $\partial^{n-2}$, $\partial^{n-3}$, [/mm] etc. Siehst du was?

>  b) geben Sie eine lineare Abbildung  [mm]\partial: K^{n} \to K^{n}[/mm]
> an, so dass
> [mm]\partial^{n}=0[/mm] und [mm]\partial^{n-1} \not=0[/mm] ist.

Da musst du einfach nur eine solche Abbildung angeben. Versuchs doch mal mit der Abbildung [mm] $\varphi [/mm] : [mm] K^n \to K^n$, $(x_1, \dots, x_n) \mapsto [/mm] (0, [mm] x_1, \dots, x_{n-1})$. [/mm] Du musst nur noch nachrechnen, dass diese Abbildung linear ist (das sollte recht klar sein) und die gegebene Eigenschaft erfuellt, also [mm] $\varphi^{n-1} \neq [/mm] 0$ (d.h. es gibt einen Vektor $v [mm] \in K^n$ [/mm] mit [mm] $\varphi^{n-1}(v) \neq [/mm] 0$) und [mm] $\varphi^n [/mm] = 0$ (d.h. fuer alle $v [mm] \in K^n$ [/mm] ist [mm] $\varphi^n(v) [/mm] = 0$).

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]