matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbbildungen und MatrizenLineare Abbildung zeigen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Abbildungen und Matrizen" - Lineare Abbildung zeigen
Lineare Abbildung zeigen < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildung zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:33 Sa 22.01.2011
Autor: Benja91

Aufgabe
Ist die Abbildung [mm] L:R^{3}->R^{2} [/mm] definiert durch [mm] L(\vektor{x1 \\ x2 \\x3})=\pmat{ x*x2 \\ x1+x3 } [/mm]

Ich habe diese Frage in keinem anderen Forum gestellt:

Hallo,

ich muss obige Aufgabe berechnen und habe meine Probleme damit. Auch die Kriterien für die Linearität von Abbildungen hilft mir nicht weiter. Es wäre toll wenn ihr mir helfen könntet, auch wenn ich leider keinen Ansatz liefern kann.

Vielen Dank und ein schönes Wochenende
Benja

        
Bezug
Lineare Abbildung zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:50 Sa 22.01.2011
Autor: schachuzipus

Hallo Benja91,


> Ist die Abbildung [mm]L:R^{3}->R^{2}[/mm] definiert durch
> [mm]L(\vektor{x1 \\ x2 \\ x3})=\pmat{ x*x2 \\ x1+x3 }[/mm] linear?

Ich nehme an, dass es heißen soll: [mm]L\left(\vektor{x_1\\ x_2\\ x_3}\right)=\vektor{x_{\red{1}}\cdot{}x_2\\ x_1+x_3}[/mm]


>  Ich habe
> diese Frage in keinem anderen Forum gestellt:
>  
> Hallo,
>  
> ich muss obige Aufgabe berechnen und habe meine Probleme
> damit. Auch die Kriterien für die Linearität von
> Abbildungen hilft mir nicht weiter. Es wäre toll wenn ihr
> mir helfen könntet, auch wenn ich leider keinen Ansatz
> liefern kann.

Nun, das Produkt in der ersten Komponente des Bildes sollte dir die Linearität kaputt machen.

Wenn du zwei allg. Vektoren [mm]\vec{x}=\vektor{x_1\\ x_2\\ x_3}[/mm] und [mm]\vec{y}=\vektor{y_1\\ y_2\\ y_3}[/mm] abbildest und dann addierst, also [mm]L(\vec{x})+L(\vec{y})[/mm] berechnest, kommt

[mm]\vektor{x_1\cdot{}x_2\\ x_1+x_3}+\vektor{y_1\cdot{}y_2\\ y_1+y_3}=\red{\vektor{x_1\cdot{}x_2+y_1\cdot{}y_2\\ x_1+x_3+y_1+y_3}}[/mm] heraus.

Was kommt raus, wenn du [mm]L(\vec{x}+\vec{y})[/mm] berechnest?

[mm]\vektor{(x_1+y_1)(x_2+y_2)\\ (x_1+y_1)+(x_3+y_3}=\red{\vektor{x_1x_2+y_1y_2+\left[y_1x_2+x_1y_2\right]\\ x_1+x_3+y_1+y_3}}[/mm]

Das stimmt zwar in der zweiten Komponente  überein, aber in der ersten wohl im Allgemeinen nicht. Der Ausdruck in den eckigen Klammern ist i.A [mm]\neq 0[/mm]

Suche dir also 2 möglichst einfache Vektorn [mm]\vec{x},\vec{y}[/mm] und rechne damit vor:

[mm]L(\vec{x}+\vec{y})\neq L(\vec{x})+L(\vec{y})[/mm]

Die Suche nach einem Gegenbsp überlasse ich dir. Nimm ein paar einfache Vektoren und probiere etwas rum.

Orientieren kannst du dich an der Rechnung mit den allg. Vektoren oben ...

Falls übrigens das ganz oben in der ersten Bildkomponente nicht [mm]x_{\red{1}}\cdot{}x_2}[/mm] heißen soll, sondern [mm]x_{\blue{3}}\cdot{}x_2[/mm] (o.ä.), geht das ganz analog.

Die Multiplikation mach dir die Linearität kaputt ...

>  
> Vielen Dank und ein schönes Wochenende

Dir auch!

>  Benja

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]