matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenLineare Abbildung und Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Abbildungen" - Lineare Abbildung und Matrix
Lineare Abbildung und Matrix < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildung und Matrix: Frage zu Übungsbeispiel
Status: (Frage) beantwortet Status 
Datum: 19:08 Mo 19.11.2007
Autor: it-o-mat

Aufgabe
Ist die folgenden Abbildungen Z3-linear?

F : [mm] \IZ_{3}[X] [/mm] → [mm] \IZ_{3}[X]; [/mm] f → [mm] f^3. [/mm]

Aufgabe 2:

Gegeben sei

v1= [mm] \vektor{1 \\ 0 \\ 0 \\2} [/mm] v2= [mm] \vektor{0 \\ 1 \\ 0 \\4} [/mm]

Man finde eine surjektive lineare Abbildung F : [mm] \IR^4 [/mm] → [mm] \IR^2, [/mm] x → A·x, deren Kern span{v1, v2} ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Soviel dazu dass ich hier neu bin :)

aber gleich zum thema:

wie behandle ich dieses Beispiel? für die Multiplikation ist die linearität nachweisen ja nicht schwer, aber kann ich für die addition [mm] (f+g)^3 [/mm] = [mm] f^3+3*f^2*g*3*f*g^2*g^3 [/mm] sagen oder bezieht sich das bei Funktionin auf die hintereinanderausführung und kann ich das nicht so machen?

Beim zweiten Beispiel kann ich ja aufgrund des Kerns Gleichungen für Meine Matrix aufstellen, doch wirklich weiter bringt mich das nicht. Zudem rätsel ich immer noch was mir in diesem Fall die surjektivität bringt.

Hoffe ich hab mich nicht daneben benommen :)

        
Bezug
Lineare Abbildung und Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 09:13 Di 20.11.2007
Autor: angela.h.b.


> Ist die folgenden Abbildungen Z3-linear?
>  
> F : [mm]\IZ_{3}[X][/mm] → [mm]\IZ_{3}[X];[/mm] f → [mm]f^3.[/mm]
>  
> Aufgabe 2:
>  
> Gegeben sei
>  
> v1= [mm]\vektor{1 \\ 0 \\ 0 \\2}[/mm] v2= [mm]\vektor{0 \\ 1 \\ 0 \\4}[/mm]
>  
> Man finde eine surjektive lineare Abbildung F : [mm]\IR^4[/mm]
> → [mm]\IR^2,[/mm] x → A·x, deren Kern span{v1, v2} ist.

> wie behandle ich dieses Beispiel? für die Multiplikation
> ist die linearität nachweisen ja nicht schwer,

Hallo,

[willkommenmr].

Daß Du das nicht schwer fandest, wundert mich in höchstem Maße...

Konntest Du wirklich zeigen daß [mm] F(\alpha f)=\alpha [/mm] F(f) für alle [mm] \alpha \in \IZ [/mm] und [mm] f\in \IZ_{3}[X] [/mm] richtig ist?


> aber kann
> ich für die addition [mm](f+g)^3[/mm] = [mm]f^3+3*f^2*g+3*f*g^2+g^3[/mm]
> sagen

Du bist ja im Polynomring und hast mit dieser Multiplikation die richtige Verknüpfung. Du siehst, daß das nicht linear ist?

Gib ein Gegenbeispiel für die Linearität an, z.B. f=X und g=1.


> Beim zweiten Beispiel kann ich ja aufgrund des Kerns
> Gleichungen für Meine Matrix aufstellen, doch wirklich
> weiter bringt mich das nicht. Zudem rätsel ich immer noch
> was mir in diesem Fall die surjektivität bringt.

Naja, wenn der Kern span{v1, v2} sein soll, bietet es sich ja schonmal an, diese beiden Vektoren auf den Nullvektor abzubilden.

Wenn die Abbildung surjektiv sein soll, brauchst Du nun noch zwei Basisvektoren des [mm] \IR^4, [/mm] die auf [mm] \vektor{1 \\ 0} [/mm] und [mm] \vektor{0\\ 1}, [/mm] also auf eine Basis des [mm] \IR^2 [/mm] abgebildet werden.

Ergänze [mm] v_1, v_2 [/mm] zu einer Basis des [mm] \IR^4 [/mm] und bilde diese ergänzenden Vektoren auf die Standardvektoren des [mm] \IR^2 [/mm] ab. Damit hast Du die Abbildung F, die's tut, und Du mußt nur noch die darstellende Matrix finden.

>  

> Hoffe ich hab mich nicht daneben benommen :)

Du hst Dich recht gut benommen.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]