matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenLineare Abbildung/Symm.BLF
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Lineare Abbildung/Symm.BLF
Lineare Abbildung/Symm.BLF < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildung/Symm.BLF: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:46 Fr 14.01.2011
Autor: Sujentha

Aufgabe
Sei V ein [mm]\IF_2[/mm]-Vektorraum und [mm]\alpha:V \times V\to\IF_2[/mm] eine symmetrische Bilinearform.Zeigen Sie,dass die Abbildung [mm]w_\alpha:V \to \IF_2[/mm] mit [mm]w_\alpha(v)=\alpha(v,v)[/mm] eine lineare Abbildung ist.Geben Sie zwei symmetrische Bilinearformen [mm]\alpha[/mm] und [mm]\alpha'[/mm] auf [mm]\IF^2_2[/mm] an, so dass [mm]\alpha \not= \alpha'[/mm] und [mm]w_\alpha=w_{\alpha'}[/mm] gelten.

Hallo,

also zur Linearität der Abbildung
[mm]w_\alpha:V \to \IF_2[/mm] mit [mm]w_\alpha(v)=\alpha(v,v)[/mm]:
Homogenität:
[mm]w_\alpha(\lambda v)=\alpha(\lambda v,\lambda v)=\lambda \alpha(v,v)=\lambda w_\alpha(v)[/mm]
Additivität:
[mm]w_\alpha(v+z)=\alpha(v+z,v+z)=\alpha(v,v)+\alpha(z,z)=w_\alpha(v)+w_\alpha(z)[/mm]
Ist das richtig?
Weiß jetzt jedoch nicht,wie ich die symmetrischen Bilinearformen finden soll,wäre echt super,wenn ihr mir da helfen könntet.

Gruß,Sujentha.


        
Bezug
Lineare Abbildung/Symm.BLF: Antwort
Status: (Antwort) fertig Status 
Datum: 22:50 Fr 14.01.2011
Autor: Lippel

Nabend,

> Sei V ein [mm]\IF_2[/mm]-Vektorraum und [mm]\alpha:V \times V\to\IF_2[/mm]
> eine symmetrische Bilinearform.Zeigen Sie,dass die
> Abbildung [mm]w_\alpha:V \to \IF_2[/mm] mit [mm]w_\alpha(v)=\alpha(v,v)[/mm]
> eine lineare Abbildung ist.Geben Sie zwei symmetrische
> Bilinearformen [mm]\alpha[/mm] und [mm]\alpha'[/mm] auf [mm]\IF^2_2[/mm] an, so dass
> [mm]\alpha \not= \alpha'[/mm] und [mm]w_\alpha=w_{\alpha'}[/mm] gelten.

>  Hallo,
>  
> also zur Linearität der Abbildung
>  [mm]w_\alpha:V \to \IF_2[/mm] mit [mm]w_\alpha(v)=\alpha(v,v)[/mm]:
>  Homogenität:
>  [mm]w_\alpha(\lambda v)=\alpha(\lambda v,\lambda v)=\lambda \alpha(v,v)=\lambda w_\alpha(v)[/mm]

[ok]

>  
> Additivität:
>  
> [mm]w_\alpha(v+z)=\alpha(v+z,v+z)=\alpha(v,v)+\alpha(z,z)=w_\alpha(v)+w_\alpha(z)[/mm]
>  Ist das richtig?

Nein, die Additivität stimmt nicht:
[mm]w_\alpha(v+z)=\alpha(v+z,v+z)=\alpha(v,v+z)+\alpha(z,v+z)=\alpha(v,v)+\alpha(v,z)+\alpha(z,v)+\alpha(z,z)[/mm]
Jetzt musst du weiter begründen, warum das das gleiche ist wie [mm] $w_\alpha(v)+w_\alpha(z)[/mm]$. [/mm] Verwende dabei, dass deine Bil.form symmetrisch ist und du in einem [mm] $\IF_2$-Vektorraum [/mm] rechnest.

>  Weiß jetzt jedoch nicht,wie ich die symmetrischen
> Bilinearformen finden soll,wäre echt super,wenn ihr mir da
> helfen könntet.

Betrachte mal die zwei Bilinearformen, die bezüglich der Stadardbasis von folgenenden Matrizen dargestellt werden:
[mm] $\pmat{1 & 0 \\ 0 & 1}$ [/mm] und $ [mm] \pmat{1 & 1 \\ 1 & 1}$ [/mm]
Beachte wieder, dass es sich um den [mm] $\IF_2^2$ [/mm] handelt.

LG Lippel


Bezug
                
Bezug
Lineare Abbildung/Symm.BLF: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:08 Sa 15.01.2011
Autor: Sujentha

Okay,also da die Bilinearform symmetrisch ist,gilt:
[mm]\alpha(z,v)=\alpha(v,z)[/mm]
Daraus folgt:
[mm]\alpha(v,v)+\alpha(v,z)+\alpha(z,v)+\alpha(z,z)=\alpha(v,v)+2\alpha(v,z)+\alpha(z,z)=\alpha(v,v)+\alpha(z,z)=w_\alpha(v)+w_\alpha(z)[/mm], da im [mm]\IF_2[/mm] 2=0 ist. Stimmt das?
Weiß trotzdem leider immer noch nicht genau,wie ich jetzt die BLF finden soll,dabei hast du mir ja eigentlich schon die fertigen Gramschen Matrizen gepostet... Liegt auch vielleicht an der Uhrzeit,ich geh jetzt erstmal schlafen ;-) ,bin trotzdem für weitere Tipps immer offen.

Gruß,Sujentha.

Bezug
                        
Bezug
Lineare Abbildung/Symm.BLF: Antwort
Status: (Antwort) fertig Status 
Datum: 17:35 Sa 15.01.2011
Autor: Lippel

Hallo,

> Okay,also da die Bilinearform symmetrisch ist,gilt:
>  [mm]\alpha(z,v)=\alpha(v,z)[/mm]
>  Daraus folgt:
>  
> [mm]\alpha(v,v)+\alpha(v,z)+\alpha(z,v)+\alpha(z,z)=\alpha(v,v)+2\alpha(v,z)+\alpha(z,z)=\alpha(v,v)+\alpha(z,z)=w_\alpha(v)+w_\alpha(z)[/mm],
> da im [mm]\IF_2[/mm] 2=0 ist. Stimmt das?

Alles richtig [ok]

>  Weiß trotzdem leider immer noch nicht genau,wie ich jetzt
> die BLF finden soll,dabei hast du mir ja eigentlich schon
> die fertigen Gramschen Matrizen gepostet... Liegt auch
> vielleicht an der Uhrzeit,ich geh jetzt erstmal schlafen
> ;-) ,bin trotzdem für weitere Tipps immer offen.

Ich hatte dir ja die beiden Matrizen
$ [mm] \pmat{1 & 0 \\ 0 & 1} [/mm] $ und $ [mm] \pmat{1 & 1 \\ 1 & 1} [/mm] $ gegeben.
Die erste vermittle die Bilinearform [mm] $\alpha$ [/mm] die zweite [mm] $\alpha'$ [/mm]
berechne doch mal [mm] $\omega_\alpha(v)$ [/mm] und [mm] $\omega_{\alpha'}(v)$ [/mm] für einen allgemeinen Vektor $v [mm] \in \IF_2^2: [/mm] $ [mm] $v=\pmat{a \\ b}$ [/mm]

LG Lippel



Bezug
                                
Bezug
Lineare Abbildung/Symm.BLF: Versuch
Status: (Frage) beantwortet Status 
Datum: 00:21 So 16.01.2011
Autor: Sujentha

Okay,also ich hab mich gerade nochmal dran versucht,nachdem ich die Aufgabe erstmal weiter aufgeschoben hatte.Auch auf die Gefahr hin,dass es völliger Unsinn ist,denn ich jetzt schreibe,poste ich mal mein Ergebnis.
Wäre die Abbildungsvorschrift für eine Bilinearform mit der Matrix $ [mm] \pmat{1 & 0 \\ 0 & 1} [/mm] $ nicht [mm]x_1y_1+x_2y_2[/mm] ?
Dann erhalte ich für  $ [mm] \omega_\alpha(v)=\alpha(v,v)=\alpha(\pmat{a \\ b}, \pmat{a \\ b})=a^2+b^2$ [/mm]
Für die andere Matrix erhalte ich mit [mm](x_1+x_2)(y_1+y_2)[/mm]:
$ [mm] \omega_{\alpha'}(v)=a^2+2ab+b^2 [/mm] $
Und da wir im [mm]\IF_2[/mm] sind und 2=0 dort gilt,erhalten wir dort ebenfalls [mm]a^2+b^2[/mm].

Bezug
                                        
Bezug
Lineare Abbildung/Symm.BLF: Antwort
Status: (Antwort) fertig Status 
Datum: 00:30 So 16.01.2011
Autor: Lippel

Nabend,

> Okay,also ich hab mich gerade nochmal dran versucht,nachdem
> ich die Aufgabe erstmal weiter aufgeschoben hatte.Auch auf
> die Gefahr hin,dass es völliger Unsinn ist,denn ich jetzt
> schreibe,poste ich mal mein Ergebnis.
>  Wäre die Abbildungsvorschrift für eine Bilinearform mit
> der Matrix [mm]\pmat{1 & 0 \\ 0 & 1}[/mm] nicht [mm]x_1y_1+x_2y_2[/mm] ?
>  Dann erhalte ich für  
> [mm]\omega_\alpha(v)=\alpha(v,v)=\alpha(\pmat{a \\ b}, \pmat{a \\ b})=a^2+b^2[/mm]
> Für die andere Matrix erhalte ich mit [mm](x_1+x_2)(y_1+y_2)[/mm]:
>  [mm]\omega_{\alpha'}(v)=a^2+2ab+b^2[/mm]
>  Und da wir im [mm]\IF_2[/mm] sind und 2=0 dort gilt,erhalten wir
> dort ebenfalls [mm]a^2+b^2[/mm].

Genau [ok]

LG Lippel


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]