matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraLineare Abbildung HILFE
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Lineare Abbildung HILFE
Lineare Abbildung HILFE < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildung HILFE: Frage????
Status: (Frage) beantwortet Status 
Datum: 15:03 Fr 21.01.2005
Autor: Alice_U

Hi, ich hoffe mir kann hier jemand helfen, ich komme mit dieser Aufgabe einfach nicht weiter, dabei ist die Lösung schon bekannt. Ich komme einfach nicht auf die richtigen Lösungsweg!!??
Danke Alice


Aufgabe : Eine lineare Abbildung f : R2 ->R2 habe bezüglich der Basis
B = { (1,-1)(-3,2)}
die Abbildungsmatrix
A =  [mm] \pmat{ 1 & 1\\ 0 & -2} [/mm]


(a) Der Vektor x habe bezüglich der Standardbasis die Darstellung x = (1, 1) Bestimmen Sie die Koordinaten von f(x) bezüglich der Standardbasis.

(b) Bestimmen Sie die Abbildungsmatrix B von f bezüglich der Standardbasis.
Lösungen: (a) f(1, 1) = (−19, 15)T, (b) B =  [mm] \pmat{ -9 &-10\\ 7 & 8 } [/mm]


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Lineare Abbildung HILFE: Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 Fr 21.01.2005
Autor: DaMenge

Hi,

du kannst entweder die b) zuerst machen und dann einfach für die a) x einsetzen oder du berechnest bei a) erst die Koordinatendarstellung von x bzgl B und setzt dann in A ein - und dann wieder zurück in Standardbasis umrechnen - dies sind immer einfache Gleichungssysteme, die du lösen musst.

ich denke, du solltest aber die b) zuerst machen und dann x in Standardbasis einfach einsetzen...
für die b) musst du passende Transormationsmatrizen suchen, so dass:
S=T*A*T^-1 die Darstellungsmatrix btgl. Standardbasis ist.
dein A gibt dir Vektoren bzgl. Basis B aus, d.h. T muss diese dann noch in Standardbasis umwandeln - also wenn du (1,0) aus B in T hineinsteckst, soll (1,-1) raus kommen und wenn du (0,1) aus B hineinsteckst, soll (-3,2) rauskommen - wie sieht also dein T aus?
naja, das ist einfach:
$ [mm] T=\pmat{1& -3\\-1&2} [/mm] $

dann musst du noch T^-1 berechnen (das macht nämlich gerade das umgekehrte: es verwandelt einen Vektor bzgl Standardbasis ind einen bzgl Basis B um) und dann war's das auch schon, dann musst du nur noch S ausrechnen !

du musst also ein bisschen Basistransformieren...
(siehe Mitschrift/Buch/Skript)

viele Grüße
DaMenge

Bezug
        
Bezug
Lineare Abbildung HILFE: Danke :-)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:17 Sa 22.01.2005
Autor: Alice_U

Danke, du hast mich wirklich weiter geholfen!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]