matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraLineare Abbildung Drehung 
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Lineare Abbildung Drehung
Lineare Abbildung Drehung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildung Drehung : Frage!!!
Status: (Frage) beantwortet Status 
Datum: 21:57 Mi 20.04.2005
Autor: Ernesto

Einen gemütlichen guten abend
nun zum ernst der Lage

Kann mir vielleicht irgendjemand sagen wie die Lösung zu folgender Aufgabe lautet:

Sei < , > das STandarsskalarprodukt auf [mm] R^2 [/mm] und T : [mm] R^2 [/mm] -> [mm] R^2 [/mm] die lineare Abbildung durhc T(x,y) =  (-y;x). Dann ist T die Drehung um 90° und es gilt
< u;Tu > = 0  [mm] \forall [/mm]  u  [mm] \in R^2 [/mm]

ich habe mich eingehend mit den Definitionen von Skalarprodukt  und linearer Abbildung beschäftigt , aber ich bekomme keinen Lösungsweg hin .

Ich bedanke mich schon im vorraus

Thomas

        
Bezug
Lineare Abbildung Drehung : Antwort
Status: (Antwort) fertig Status 
Datum: 10:16 Do 21.04.2005
Autor: Julius

Hallo Ernesto!

Offenbar gilt:

$T [mm] \pmat{ x \\y} [/mm] = [mm] \pmat{-y \\ x} [/mm] = [mm] \pmat{0 & -1 \\ 1 & 0} \cdot \pmat{x \\ y} [/mm] = [mm] \pmat{\cos(90°) & - \sin(90°) \\ \sin(90°) & \cos(90°)} \cdot \pmat{x \\ y}$. [/mm]

Weiterhin ist für [mm] $u=\pmat{ x \\ y}$: [/mm]

[mm] $\langle [/mm] u,Tu [mm] \rangle$ [/mm]

$= [mm] \left\langle \pmat{x \\ y} ,T \ \pmat{x \\ y} \right\rangle$ [/mm]

$= [mm] \left\langle \pmat{x\\y} , \pmat{-y \\ x} \right\rangle$ [/mm]

$= x [mm] \cdot [/mm] (-y) + y [mm] \cdot [/mm] x$

$= 0$.

Viele Grüße
Julius

Bezug
                
Bezug
Lineare Abbildung Drehung : aufgabenerweiterung
Status: (Frage) beantwortet Status 
Datum: 13:32 Do 21.04.2005
Autor: Chlors

Hallo,
ich habe auch ein Problem mit dieser Aufgabe. Allerdings wurde die eigentliche Aufgabe vergessen zu erwähnen. Diese lautet: Bestimmen Sie alle Skalarprodukte [|] des [mm] R^{2}, [/mm] für die [u|Tu]=0 für alle u [mm] \in R^{2} [/mm] gilt.

Mein Problem dabei ist, dass ich nicht genau weiß, was mit allen Skalarprodukten gemeint sein soll .. also ich weiß nicht, was bestimmt werden soll. was ist der unterschied zwischen standardskalarprodukt und anderen skalarprodukten? wie sehen andere skalarprodukte aus und wie lassen sie sich allgemein bestimmen?

vielen dank für eure hilfe
LG, Conny.


Bezug
                        
Bezug
Lineare Abbildung Drehung : Antwort
Status: (Antwort) fertig Status 
Datum: 15:23 Do 21.04.2005
Autor: banachella

Hallo!

Im allgemeinen ist ein Skalarprodukt auf [mm] $\IR^2$ [/mm] so definiert:
Eine Abbildung $b:\ [mm] \IR^2\times\IR^2\to \IR^+_0$ [/mm] heißt Skalarprodukt, falls
1. [mm] $b(x,x)\ge [/mm] 0$ für alle [mm] $x\in\IR^2$ [/mm] und $b(x,x)=0\ [mm] \Leftrightarrow\ [/mm] x=0$.    (positive Definitheit)
2. $b(x,y)=b(y,x)$                                                (Symmetrie)
3. [mm] $b(\alpha x+y,z)=\alpha [/mm] b(x,z)+b(y,z)$ für alle [mm] $\alpha\in\IR,\ x,y,z\in\IR^2$. [/mm]  (Linearität)

In diesem Fall muss gelten: $b(u;Tu)=0$ für alle [mm] $u\in\IR^2$. [/mm]

Hilft dir das weiter?

Gruß, banachella

Bezug
                                
Bezug
Lineare Abbildung Drehung : Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:28 Do 21.04.2005
Autor: Chlors

Hi,
danke schön für deine Hilfe. Ich versuche, damit mal weiterzukommen.
LG, Conny.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]