matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenLineare Abbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Abbildungen" - Lineare Abbildung
Lineare Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:27 Fr 07.03.2008
Autor: Charlie1984

Aufgabe
Wir betrachten die Abbildung L: [mm] \IQ^{(2,2)} \to \IQ^{(2,2)} [/mm]
                                  X [mm] \mapsto [/mm] AX + XA,

wobei die Matrix A [mm] \in \IQ^{(2,2)} [/mm] gegeben sei durch :

A := [mm] \pmat{ 1 & 1 \\ 1 & 1 } \in \IQ^{(2,2)} [/mm]

a) Zeigen Sie, dass L eine lineare Abbildung über [mm] \IQ [/mm] ist.

b) Bestimmen Sie eine Basis von Kern L.

c) Bestimmen Sie eine Basis von Bild L.

Hallo!

Ich hab mal ne Frage zu der obigen Aufgabe.

Also wir haben hier eine Abbildung die eine Matrix auf Summe von 2 Produkten von Matrizen abbildet.

zu a) würd ich sagen dass man recht leicht die homogenität und die additivität nachweist.

Aber wie ist das mit den Basen ?

Wie soll ich das ausrechnen ? Ich kenn nur das Verfahren mit der Darstellungsmatrix (wo man die einheitsmatrix daneben schreibt und in zeilenstufenform bringt).

Könnte mir da jmd sagen wie das geht ?

Vielen Dank !!


        
Bezug
Lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:10 Fr 07.03.2008
Autor: MathePower

Hallo Charlie1984,

> Wir betrachten die Abbildung L: [mm]\IQ^{(2,2)} \to \IQ^{(2,2)}[/mm]
>  
>                                   X [mm]\mapsto[/mm] AX + XA,
>  
> wobei die Matrix A [mm]\in \IQ^{(2,2)}[/mm] gegeben sei durch :
>  
> A := [mm]\pmat{ 1 & 1 \\ 1 & 1 } \in \IQ^{(2,2)}[/mm]
>  
> a) Zeigen Sie, dass L eine lineare Abbildung über [mm]\IQ[/mm] ist.
>  
> b) Bestimmen Sie eine Basis von Kern L.
>  
> c) Bestimmen Sie eine Basis von Bild L.
>  Hallo!
>  
> Ich hab mal ne Frage zu der obigen Aufgabe.
>  
> Also wir haben hier eine Abbildung die eine Matrix auf
> Summe von 2 Produkten von Matrizen abbildet.
>  
> zu a) würd ich sagen dass man recht leicht die homogenität
> und die additivität nachweist.
>  
> Aber wie ist das mit den Basen ?
>  
> Wie soll ich das ausrechnen ? Ich kenn nur das Verfahren
> mit der Darstellungsmatrix (wo man die einheitsmatrix
> daneben schreibt und in zeilenstufenform bringt).
>  
> Könnte mir da jmd sagen wie das geht ?

1. Die Basis von Kern L:

Da [mm]X \in Q^{\left(2,2\right)}[/mm], löse folgendes Gleichungssystem:

[mm]\pmat{ 1 & 1 \\ 1 & 1 }*\pmat{ x_{11} & x_{12} \\ x_{21} & x_{22} }+\pmat{ x_{11} & x_{12} \\ x_{21} & x_{22}} *\pmat{ 1 & 1 \\ 1 & 1 }=\pmat{ 0 & 0 \\ 0 & 0 }[/mm]

2. Die Basis von Bild L

Bilde die Basiselemente von [mm]Q^{\left(2,2\right)}[/mm] ab.

Wähle also die Standardbasis von  [mm]Q^{\left(2,2\right)}[/mm]:

[mm]<\pmat{ 1 & 0 \\ 0 & 0 }, \pmat{ 0 & 1 \\ 0 & 0 }, \pmat{ 0 & 0 \\ 1 & 0 }, \pmat{ 0 & 0 \\ 0 & 1 }>[/mm]

und bilde nacheinander

[mm]f\left(\pmat{ 1 & 0 \\ 0 & 0 },\right), f\left(\pmat{ 0 & 1 \\ 0 & 0 },\right), f\left(\pmat{ 0 & 0 \\ 1 & 0 },\right), f\left(\pmat{ 0 & 0 \\ 0 & 1 },\right)[/mm]

Stelle hier fest welches System von Bildmatrizen eine Basis bilden, also welches System von Bildmatrizen linear unabhängig ist.

> Vielen Dank !!
>  

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]