matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraLineare Abb. [Folge]
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Lineare Abb. [Folge]
Lineare Abb. [Folge] < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abb. [Folge]: Linearität von Folgen
Status: (Frage) beantwortet Status 
Datum: 18:30 Mo 20.11.2006
Autor: ramok

Aufgabe
  f: [mm] \{{(a_i)_{i \in \IN}} | {(a_i)_{i \in \IN}} \in \IR^{\IN} { ist konvergente Folge} \} \to \IR, [/mm]
      [mm] (a_i)_{i \in \IN} \mapsto \limes_{i\rightarrow\infty}a_i [/mm]      

    * Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



Guten abend,

um zu zeigen das diese Folge eine Lineare Abbildung ist muss ich ja
(i) die abgeschlossenheit bzgl. der Addition
(ii) Homogenität,

zeigen. Wie kann ich das jetzt bei einer Folge machen? Ich muss doch sicherlich die Recheneregeln für Folgen werwenden!?

Danke

        
Bezug
Lineare Abb. [Folge]: Antwort
Status: (Antwort) fertig Status 
Datum: 08:01 Di 21.11.2006
Autor: angela.h.b.

Hallo,

verwende bitte den Formeleditor, Eingabehilfen unter dem Fenster für die Texteingabe.
SO ist die Aufgabe kaum zu verstehen, was nicht an ihrer Schwierigkeit liegt.
(Eines allerdings ist mir auch inhaltlich rätselhaft: wenn die Folgen aus [mm] R^n [/mm] sind, wie kann dann der Grenzwert in R liegen? Na, vermutlich ein Schreibfehler.)

Zu zeigen ist jedenfalls, daß [mm] f((a_i)+(b_i))=f((a_i))+f((b_i)) [/mm]  und [mm] f(k(a_i))=kf((a_i)) [/mm] gilt, und hierfür mußt Du Deine Kenntnisse aus der Analysis auspacken, wie Du schon richtig erkannt hast.

Was ist [mm] z.B.(a_i)+(b_i), [/mm] und was ist der Grenzwert davon?

Gruß v. Angela


            

Bezug
                
Bezug
Lineare Abb. [Folge]: lg vorschlag
Status: (Frage) beantwortet Status 
Datum: 17:14 Di 21.11.2006
Autor: ramok

wäre dies richtig?

Sei bi eine konvergente folge die gegen b konvergiert und ai ist eine konvergente folge die gegen a konvergiert, dann gilt

zu (i):
  (f(ai + bi)) = f(ai) + f(bi)
                   = a + b
                   = (f(ai) + f(bi))

zu (ii) sei s element von K(s ist ein skalar):
   f(s(ai)) = s * a
              = s * f(ai)

Stimt das jetzt so? Sollte ich besser noch den Limes für i gegen unendlich    
verwenden um die Konvegenz von ai gegen a und von bi gegen b zu verdeutlichen?

Stimtm das jetzt so??

Danke für mögl.  antwort.


Bezug
                        
Bezug
Lineare Abb. [Folge]: Antwort
Status: (Antwort) fertig Status 
Datum: 17:33 Di 21.11.2006
Autor: leduart

Hallo ramok
> wäre dies richtig?
>  
> Sei bi eine konvergente folge die gegen b konvergiert und
> ai ist eine konvergente folge die gegen a konvergiert, dann
> gilt

was soll denn f sein?

> zu (i):
>    (f(ai + bi)) = f(ai) + f(bi)
>                     = a + b

und hier steht doch nur die Definition für lin. Abbildung.
Ich kann die Aufgabe wirklich nicht lesen! von wo nach wo geht denn die Abbildung? was sind die [mm] a_i [/mm] aus [mm] \IR [/mm] oder [mm] \IQ, [/mm]
soll es ne Abbildung von [mm] \IR^n [/mm] nach r sein?
Dies hier scheint mit keine Lösung  sondern ne Behauptung! Genauso für ii
Gruss leduart

>                     = (f(ai) + f(bi))
>  
> zu (ii) sei s element von K(s ist ein skalar):
>     f(s(ai)) = s * a
>                = s * f(ai)
>
> Stimt das jetzt so? Sollte ich besser noch den Limes für i
> gegen unendlich    
> verwenden um die Konvegenz von ai gegen a und von bi gegen
> b zu verdeutlichen?
>  
> Stimtm das jetzt so??
>  
> Danke für mögl.  antwort.
>  

Bezug
                                
Bezug
Lineare Abb. [Folge]: sry
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:47 Di 21.11.2006
Autor: ramok

sorry ich schreib die folge nochmal neu ab.

f = [mm] {(ai)i\inN | (ai)i\inN \in \IR^\IN ist konvergente Folge} -->\IR, [/mm]

[mm] (ai)i\inN [/mm] |----> [mm] \limes_{i\rightarrow\infty} [/mm] ai , [mm] \IR-Körper. [/mm]

ok ich hoffe ihr könnt mir jetzt weiterhelfen.

Bezug
                        
Bezug
Lineare Abb. [Folge]: Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 Di 21.11.2006
Autor: angela.h.b.


> wäre dies richtig?
>  
> Sei bi eine konvergente folge die gegen b konvergiert und
> ai ist eine konvergente folge die gegen a konvergiert, dann
> gilt
>  
> zu (i):
>    (f(ai + bi)) = f(ai) + f(bi)


Hallo,

wie leduart schon sagte:
Du verwendest hier die Behauptung, die Du doch erst zeigen willst. Das geht natürlich nicht.

Mach es so: seien [mm] (a_i) [/mm] und [mm] (b_i) [/mm] Folgen, welche gegen a bzw. b konvergieren.

Dann konvergiert [mm] (a_i)+(b_i)=(a_i+b_i) [/mm] lt. Analysis_Vorlesung gegen a+b.

Also ist [mm] f((a_i)+(b-i))=a+b= [/mm] ... ???

Ähnlich für Teil ii)

Gruß v. Angela

P.S.: Ich werde jetzt Deine Aufgabenstellung editieren, so daß man sie lesen kann. Bitte mach' Dich mit der Formeleingabe vertraut. Mit Rätselaufgaben von Dir werde ich mich in Zukunft nicht mehr beschäftigen.
Warum Du es dem Leser unnötig schwer? [mm] a_i [/mm] statt ai - das ist ein zusätzlicher Tastendruck.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]