matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraLinear unabhängige Vektoren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Linear unabhängige Vektoren
Linear unabhängige Vektoren < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linear unabhängige Vektoren: Aufgabe2
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 02:27 Mo 05.06.2006
Autor: maggi20

Aufgabe
Es seien die vektoren a1, a2,....,ar,b1,b2,....bs linear unabhängige Vektoren eines Vektorraumes V. Zeigen Sie <a1,a2,...ar> (Durchschnittszeichen) b1,b2,....,bs.

Hallo!
Kann mir bitte jemand erklären was ich da machen muss. Soll ich zeigen, dass die beiden linear unabhängigen Vektoren gleich sind, da ein Vektor in V eineindeutig dargestellt wird ( durch eine Basis)?
Liebe Grüsse
Maggi

        
Bezug
Linear unabhängige Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 02:53 Mo 05.06.2006
Autor: felixf

Hallo Maggi!

> Es seien die vektoren a1, a2,....,ar,b1,b2,....bs linear
> unabhängige Vektoren eines Vektorraumes V. Zeigen Sie
> <a1,a2,...ar> (Durchschnittszeichen) b1,b2,....,bs.

Du hast da wohl etwas vergessen abzutippen... Sollst du zeigen, dass [mm] $\langle a_1, \dots, a_r \rangle \cap \langle b_1, \dots, b_s \rangle [/mm] = [mm] \{ 0 \}$ [/mm] ist? Oder etwas anderes?

Nimm doch mal an, du hast einen Vektor $v [mm] \in \langle a_1, \dots, a_r \rangle \cap \langle b_1, \dots, b_s \rangle$. [/mm] Du musst zeigen, dass $v = 0$ ist.

Es gibt nun [mm] $\lambda_1, \dots, \lambda_r, \mu_1, \dots, \mu_r \in [/mm] K$ mit [mm] $\sum_{i=1}^r \lambda_i a_i [/mm] = v = [mm] \sum_{j=1}^s \mu_j b_j$ [/mm] (ueberleg dir mal warum).

Insbesondere gilt also [mm] $\sum_{i=1}^r \lambda_i a_i [/mm] + [mm] \sum_{j=1}^s -\mu_j) b_j [/mm] = v - v = 0$. Jetzt weisst du, dass [mm] $a_1, \dots, a_r, b_1, \dots, b_s$ [/mm] linear unabhaengig ist. Was sagt dir das ueber die [mm] $\lambda_i$ [/mm] und [mm] $\mu_j$? [/mm] (Schau dir die Definition von linear (un)abhaengig an wenn dir das nichts sagt.)

Und was sagt dir das dann ueber $v$ aus?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]